Workshop

Monoclonal Antibodies in Cancer

Glenn Dranoff
Dana-Farber Cancer Institute

Ira Mellman
Genentech

George Weiner
University of Iowa
Quotes from Esteemed Oncologist

1989 to me – “I don’t know why you are so interested in anti-cancer monoclonal antibodies. You are throwing your career away on a failed hypothesis.”

2007 to ASCO – “Anti-cancer monoclonal antibodies represent a great advance in cancer therapy.”

2010 to my post-doc – “I don’t know why you are so interested in anti-cancer antibodies. Further advances will be only incremental.”
Still Much to Learn!

Example from my own laboratory
How do NK cell-mediated ADCC and Complement Interact?
C3b inhibits monoclonal antibody-induced NK activation and ADCC
Depleting complement with HC3-1496 enhances efficacy of anti-cancer antibody therapy in a murine model
Ab structure
- Novel constructs
- Kinetics
- Biodistribution
- Immunoconjugates

Interaction with immune system
- Fc Receptors
- Other receptors
- Induction of active immune response

Specificity
- Tumor antigen
- Signaling
- Immune response

Clinical Development
- Indications
- Combinations
- Assessing efficacy
Agenda

- **Tumor Targeted Antibodies** (Ira Mellman)
 - Targeting Activated HER2 I Solid Tumors (Mark Sliwkowski)
 - Antibody-Based Cancer Immunotherapy (Louis Weiner)
 - Combining Tumor Reactive mAbs with Cytokines to Induce ADCC in Patients (Paul Sondel)

- **Immunomodulatory Antibodies** (Glenn Dranoff)
 - Immune Modulation by Antibody (Leiping Chen)
 - Immunomodulation with Antibodies Blocking the B7-H1/PD-1 Axis (Susanne Topalian)

- **Antibodies as Vaccines** (Ira Mellman)
 - Antibody Therapeutics in Cancer: Converting Passive to Active Immunity (Raphael Clynes)
 - Antibody-Targeted Vaccines (Tibor Keler)

- **Antibody Engineering** (George Weiner)
 - Two in One Antibody: From Proof-of-Concept to Therapeutic Candidate (Germaine Fuh)
 - Engineered Anti-Cancer Antibodies with Enhanced Effector Functions (Pablo Umana)
 - T Cell Engaging BiTE Antibodies for Cancer Therapy (Patrick Baeuerle)
Developing a Better Antibody Challenges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Research</th>
<th>Clinical Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vitro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Trials
- Most lack correlative studies
- Correlation is not causation
Monoclonal Antibodies in Cancer

“You are throwing your career away on a failed hypothesis.”

False

“Anti-cancer monoclonal antibodies represent a great advance in cancer therapy.”

True

“Further advances will be only incremental.”

False