

## **Decoding the Tower of Babel**

### Vernon K. Sondak, MD Chief, Department of Cutaneous Oncology H. Lee Moffitt Cancer Center

iSBTC Meeting Washington, DC October 2, 2010

## **The Tower of Babel**



### The Tower of Babel



The destruction of the Tower of Babel left humanity (and especially melanoma researchers) speaking multiple languages and unable to achieve the greatness

## **The Babel Fish**



"The most massively useful thing in the known universe" *The Hitchhikers Guide to the Galaxy* Douglas Adams

### **Overall Survival for Metastatic Melanoma**



There has been no significant improvement in overall survival for metastatic melanoma in the past 30 years

Barth. J Am Coll Surg 1995;181:193.



## FDA Approved Drugs in Use for Melanoma

#### • Dacarbazine (DTIC)

- Response rate: <10% in unselected stage IV melanoma patients</p>
- No proven impact on survival
- Temozolomide, carbo-taxol frequently used instead

#### • High-dose IL-2

- Response rate: 16% in highly selected stage IV melanoma patients
- ➢ Durable responses: ~5%
- Rarely used outside of a few high-volume centers

#### High-dose IFN

- The only approved adjuvant therapy
- Consistent benefit on relapse-free survival, controversial survival benefit



## **The New Tower of Babel?**

- For melanoma, there are now at least seven agents that are or potentially soon will be seeking FDA and/or European approval
- 1. Pegylated interferon alfa-2b
- 2. Delcath percutaneous hepatic perfusion chemotherapy
- 3. Ipilimumab (anti-CTLA4 monoclonal antibody)
- 4. PLX4032 (V600 mutant BRAF inhibitor)
- 5. Oncovex-GMCSF (oncolytic virus for intralesional treatment)
- 6. Nilotinib (cKIT inhibitor)
- 7. Tilmanocept (Lymphoseek, new radiolabelled lymphatic mapping tracer)



## The New Tower of Babel?

| MOFFITT<br>CANCER CENTER               | Agent         | Endpoint                                      | Trial Design                                                           |
|----------------------------------------|---------------|-----------------------------------------------|------------------------------------------------------------------------|
|                                        | Peg-IFN α2b   | Relapse-free survival                         | Randomized phase III<br>adjuvant trial vs<br>observation               |
|                                        | Delcath       | Hepatic progression-<br>free survival         | Randomized phase III<br>vs "best alternative<br>care" <i>crossover</i> |
|                                        | lpilimumab    | Overall survival                              | Randomized phase III vs gp100 vaccine                                  |
|                                        | PLX4032       | Response rate                                 | Phase I/II trial                                                       |
|                                        |               | Overall survival                              | Randomized phase III vs DTIC <i>non-crossover</i>                      |
|                                        | Oncovex-GMCSF | Durable (6 month)<br>response                 | Randomized phase III vs systemic GM-CSF                                |
|                                        | Nilotinib     | Progression-free<br>survival                  | Randomized phase III vs DTIC <i>crossover</i>                          |
| Department of<br>Cutaneous<br>Oncology | Tilmanocept   | % of blue lymph<br>nodes that are also<br>hot | Open label single arm<br>non-randomized phase<br>III                   |



## **Survival – The Gold Standard**

 Overall survival (or disease-specific survival) is considered the "gold standard" for accepting a new therapy





## **Survival – The Gold Standard**

- Once one drug improves survival, the ethics and the practicality of using survival as the primary goal changes
- In melanoma, with so few active drugs, the ethics of "non-crossover" designs that prohibit trial participants from receiving potentially active therapy have been questioned



#### Target Cancer New Drugs Stir Debate on Rules of Clinical Trials New York Times September 18, 2010



Department of Cutaneous Oncology Two Cousins, Two Paths Thomas McLaughlin, left, was given a promising experimental drug to treat his lethal skin cancer in a medical trial; Brandon Ryan had to go without it.



## Clinical Trial Endpoints Issues To Consider

- We need reliable endpoints to identify active drugs early in their development so that the best drugs get tested
- We need endpoints that are meaningful to regulators, physicians <u>and</u> patients so that approved drugs get used

 How reliable are progression-free survival (PFS) and overall survival (OS) in melanoma, and are there alternate endpoints based on them to use?



## Metaanalysis of Phase II Cooperative Group Trials in Stage IV Melanoma

- 42 Phase II trials, 70 individual trial arms, conducted from 1975 to 2005
   >2,100 patients
   >SWOG, ECOG, CALGB, NCCTG, and NCIC-CTG
  - >All trials reported as "negative"
- Median OS: 6.2 months
- 1-Yr survival: 25.5%

Korn et al. J Clin Oncol 2008;26:527-534.

## Cooperative Group Phase II Trial Metaanalysis

| <u># Group Study</u> | P.I. 2     | Arm N Closed | Agent                                 |
|----------------------|------------|--------------|---------------------------------------|
| 1 CALGB C5000        | 01 Carson  | 1 38 2004    | Interleukin-12/Interferon_Alpha-2b    |
| 2 CALGB C50010       | 02 Krown   | 1 16 2005    | Temozolomide/Thalidomide              |
| 3 CALGB C50010       | 04 Gajewsl | ki 1 14 2005 | R115777                               |
| 4 CALGB C50990       | 01 Roberts | 1 26 2003    | g209-2M_peptide_vaccine/low_dose_IL-2 |
| 5 ECOG E1675         | Guerry     | A 61 1978    | MECCNU 250 MG                         |
| 6 ECOG E1675         | Guerry     | B 76 1978    | Hydroxyurea+MECCNU+DTIC               |
| 7 ECOG E1675         | Guerry     | C 71 1978    | MECCNU+BCG                            |
| 8 ECOG E1675         | Guerry     | D 130 1977   | MECCNU 150 MG                         |
| 9 ECOG E1675         | Guerry     | E 52 1979    | Hydroxyurea+Actinomycin+Cytoxan       |
| 10 ECOG E1675        | Guerry     | F 47 1979    | Chlorozotocin                         |
| 11 ECOG E1675        | Guerry     | G 48 1979    | Neocarzinostatin                      |
| 12 ECOG E1675        | Guerry     | H 4 1981     | MECCNU 200MG                          |
| 13 ECOG E1675        | Guerry     | I 39 1980    | Dibromodulcitol                       |
| 14 ECOG E1675        | Guerry     | J 48 1981    | MGBG (Methyl Gag)                     |
| 15 ECOG E1687        | Hochster   | A 17 1988    | MELPHALAN                             |
| 16 ECOG E2681        | Arseneau   | A 27 1982    | Mitoxantrone                          |
| 17 ECOG E2681        | Guerry     | B 26 1982    | AZQ                                   |
| 18 ECOG E2681        | Gale       | C 36 1983    | Demser                                |
| 19 ECOG E2683        | Parkinson  | n A 41 1984  | VINBLASTINE                           |
| 20 ECOG E2683        | Wolter     | B 39 1984    | ACIVICIN                              |
| 21 ECOG E2683        | Hawkins    | C 56 1985    | IFN-ALPHA-2                           |
| 22 ECOG E2683        | Wolter     | D 50 1985    | CCNU                                  |
| 23 ECOG E2685        | Chang      | A 28 1988    | Carboplatin                           |
| 24 ECOG E2685        | Hochster   | B 20 1990    | 4-DEOXYDOXORUBICIN                    |



# Cooperative Group Phase II Trial Metaanalysis

| <u># Group Study</u> | <u>P.I.</u> Ar | <u>m N</u>  | Closed | Agent                          |
|----------------------|----------------|-------------|--------|--------------------------------|
| 25 ECOG E4687        | Schiller A     | A 16        | 1992   | IFN-γ 0.01MG                   |
| 26 ECOG E4687        | Schiller E     | 3 15        | 1992   | IFN-γ 0.03MG                   |
| 27 ECOG E4687        | Schiller C     | C 14        | 1992   | IFN-γ 0.10MG                   |
| 28 ECOG E4687        | Schiller I     | D 14        | 1992   | IFN-γ 0.30MG                   |
| 29 ECOG E4687        | Schiller E     | E 12        | 1992   | IFN-γ 0.50MG                   |
| 30 ECOG E4687        | Schiller F     | F 11        | 1992   | IFN-γ 0.70MG                   |
| 31 ECOG E4687        | Schiller C     | G 13        | 1992   | IFN-γ 0.90MG                   |
| 32 ECOG PA682        | Green A        | A 20        | 1984   | 4'Epiadriamycin                |
| 33 ECOG PA686        | Einzig I       | I 33        | 1987   | TAXOL                          |
| 34 ECOG PB687        | Hochster       | A 19        | 9 1990 | DIDEMNIN B                     |
| 35 ECOG PC680        | Muggia         | A 16        | 5 1984 | Poly ICLC                      |
| 36 ECOG PZ686        | Harris A       | A 15        | 1991   | IFN Alpha2 + Feldene           |
| 37 NCCTG 82-70-5     | 1 Creagan      | 1 3         | 5 1985 | <b>Carmustine + 6-Thioguan</b> |
| 38 NCCTG 95-70-5     | 1 Creagan      | 1 1         | 5 2000 | KW2189 0.4 mg/m2               |
| 39 NCCTG 95-70-5     | 1 Creagan      | 2 3         | 0 2000 | KW2189 0.5 mg/m2               |
| 40 NCIC 1104 S       | eymour A       | A 17        | 1998   | Bryostatin 25 μg/m2            |
| 41 NCIC 1104 S       | eymour B       | <b>3</b> 17 | 1998   | Bryostatin 120 µg/m2           |
| 42 NCIC I137 E       | lisenhauer A   | A 17        | 2001   | Flavopiridol                   |
| 43 NCIC 1156 E       | lisenhauer A   | A 18        | 2004   | Perifosine                     |
| 44 NCIC 1169 S       | eymour A       | A 17        | 2005   | SB-715992                      |
| 45 NCIC 156 Ei       | isenhauer A    | 16          | 1992   | anthrapyrazole                 |
| 46 NCIC I61 Ei       | isenhauer A    | 16          | 1992   | 10-EDAM                        |
| 47 NCIC 191 Ei       | isenhauer A    | 29          | 1997   | BB-2516                        |
| 48 SWOG S8118        | Alberts        | 1 37        | 1984   | Bisantrene high dose           |
| 49 SWOG S8118        | Alberts 2      | 2 14        | 1984   | Bisantrene low dose            |
|                      |                |             |        |                                |

**Department of Cutaneous Oncology** 



ine

# Cooperative Group Phase II Trial Metaanalysis

#### # Group Study P.I. Arm N Closed Agent

| 50 SWOG S8240         | Goodwin 1 10 1985   | Spirogermanium high dose    |
|-----------------------|---------------------|-----------------------------|
| 51 SWOG S8240         | Goodwin 2 10 1985   | Spirogermanium low dose     |
| 52 SWOG S8324         | Kish 1 20 1987      | Fludarabine Phos, high dose |
| 53 SWOG S8324         | Kish 2 7 1987       | Fludarabine Phos, low dose  |
| 54 SWOG S8562         | Mortimer 1 15 1987  | CDDP                        |
| 55 SWOG S8569         | Whitehead 1 42 1987 | Interleukin                 |
| 56 SWOG S8723         | Slavik 1 20 1989    | Amonafide                   |
| 57 SWOG S8754         | Harvey 1 11 1989    | Didemnin B                  |
| 58 SWOG S8804         | Fletcher 1 59 1989  | CDDP + DTIC                 |
| 59 SWOG S8913         | Slavik 1 36 1993    | Merbarone                   |
| 60 SWOG S8921         | Flaherty 1 11 1991  | CTX + IL-2                  |
| 61 SWOG S8921         | Flaherty 2 12 1991  | DTIC + IL-2                 |
| 62 SWOG S8921         | Flaherty 3 55 1991  | DTIC + CDDP + Tamoxifen     |
| 63 SWOG S9116         | Sosman 1 48 1993    | Piroxantrone                |
| 64 SWOG S9223         | Meyskens 1 52 1995  | $\alpha$ -IFN + tRA         |
| 65 SWOG S9228         | Whitehead 1 34 1995 | IL-4                        |
| 66 SWOG S9348         | Margolin 1 79 1995  | BCNU/DTIC/CDDP/Tam          |
| 67 SWOG S9350         | Margolin 1 25 1996  | α-IFN/DTIC/CDDP/Tam         |
| 68 SWOG S9505         | Whitehead 1 23 1997 | PZDH                        |
| 69 SWOG S9 <u>622</u> | Whitehead 1 24 1997 | CI-980                      |
| 70 SWOG S9804         | Whitehead 1 21 2001 | Navelbine                   |
|                       |                     |                             |

## The Scrapyard of Oncology





#### Cooperative Group Phase II Trial Metaanalysis Overall Survival Results



Korn et al. J Clin Oncol 2008;26:527-534



#### Cooperative Group Phase II Trial Metaanalysis Factors Influencing Overall Survival



Korn et al. J Clin Oncol 2008;26:527-534



#### Cooperative Group Phase II Trial Metaanalysis Factors Influencing Overall Survival



Korn et al. J Clin Oncol 2008;26:527-534



## Cooperative Group Phase II Trial Metaanalysis Progression-Free Survival Results



Korn et al. J Clin Oncol 2008;26:527-534

## Cooperative Group Phase II Trial Metaanalysis Progression-Free Survival Results



Korn et al. J Clin Oncol 2008;26:527-534

## **"Benchmarks" Provide Statistical Consistency of Endpoints Across Trials**





Korn et al. J Clin Oncol 2008;26:527-534

## Statistical but Not <u>Clinical</u> Consistency of Endpoints



With multiple phase II evaluations of the same INACTIVE agent involving only ~37 patients per arm, we would expect a broad range of outcomes by chance alone



Cooperative Group Phase II Trial Metaanalysis
Applying the Results

- In the Korn metaanalysis, patients with PS 0 (n=938), OS at 1 year was 35.2%, with PFS at 6 months 18%
- Given a study with at least 50 PS 0 patients, >45% survival at 1 year or >30% progression free at 6 months are probably useful endpoints for selecting regimens for testing in phase III trials
- In recent single institution phase II trials, unequivocally negative trials had 11-22% PFS at 6 months

#### Anti-CTLA4 Antibody Treatment Improves Progression-Free Survival in Adults with Previously Treated Stage IV Melanoma



#### Anti-CTLA4 Antibody Treatment Improves Progression-Free Survival in Adults with Previously Treated Stage IV Melanoma



## How Do These Results Compare?



Annual'10 Meeting

ASC

O'Day et al. Proc ASCO 2010 abstract 4

136 403

### BRAF<sup>V600E</sup> melanoma patient PET scan at baseline and day 15 after PLX4032 treatment at 720 mg BID



Flaherty K et al. N Engl J Med 2010;363:809

# Tumor response for BRAF<sup>V600E</sup> melanoma patients treated with PLX4032 >240 mg BID



#### Flaherty K et al. N Engl J Med 2010;363:809



### Targeted Therapy Phase II Trials Metaanalysis PFS vs Response

- 89 phase II trials involving targeted therapies tested in 6 different solid tumor types
  - Breast, lung, colorectal, prostate, ovarian, renal carcinomas
  - > No melanoma patients
- Evaluated relationship between overall response rates and progression-free survival, and also looked at whether the agent received eventual regulatory approval

Department of Cutaneous Oncology

El-Maraghi et al. J Clin Oncol 2008;26:1356.



#### Targeted Therapy Phase II Trials Metaanalysis PFS vs Response

| Overall Response<br>Rate† | No. of<br>Agents | No. of Agents<br>Approved by FDA | Comments                                                                                                   |
|---------------------------|------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|
| 0%                        | 9                | 0                                | Note: one of these agents, imatinib was approved in indications<br>(CML, GIST) not included in this review |
| $> 0\%$ to $\le 10\%$     | 6                | 4                                | Sorafenib; bevacizumab; cetuximab; temsirolimus                                                            |
| $>10\%$ to $\le 20\%$     | 3                | 2 (3)                            | Trastuzumab; erlotinib (gefitinib: accelerated approval only)                                              |
| > 20%                     | 1                | 1                                | Sunitinib                                                                                                  |
| Total                     | 19               | 7 (8)                            | P = .005 excluding gefitinib; $P = < .0001$ including gefitinib                                            |

Abbreviation: FDA, US Food and Drug Administration; CML, chronic myelogenous leukemia; GIST, gastrointestinal stromal tumor. \*Regulatory approval at FDA by June 2007.

+Overall response rate calculated for each agent by pooling results of all trials across all tumor types included in the review. One agent (marimastat) did not have response outcomes reported in any of the three publications and is included as 0%.

No agent with 0% response rate approved

 "Significant association between increasing response rate and likelihood of approval," but 4 of 6 agents with response rates of 10% or less were approved!

Department of Cutaneous Oncology

El-Maraghi et al. J Clin Oncol 2008;26:1356.



Cooperative Group Phase II Trial Metaanalysis What lessons have we learned?

 Progress in the systemic therapy of metastatic melanoma requires well designed, well executed phase III trials using agents appropriately selected in phase II studies

 Eligibility criteria, patient selection and study size account for a large percentage of the variation in outcomes in phase II trials

## MOFFITT CANCER CENTER

Cooperative Group Phase II Trial Metaanalysis What lessons have we learned?

- Six-month PFS and 12-month OS may be better "selection" endpoint for phase II trials in melanoma than objective response or median survival
- New trial designs, such as adaptive randomization, and careful and individualized selection of endpoints are going to be necessary to evaluate the increasing number of promising agents in melanoma and other malignancies

## The Tower of Babel



## BUT WE CAN'T JUST BUILD A SHINY NEW TOWER OF BABEL ALL OVER AGAIN