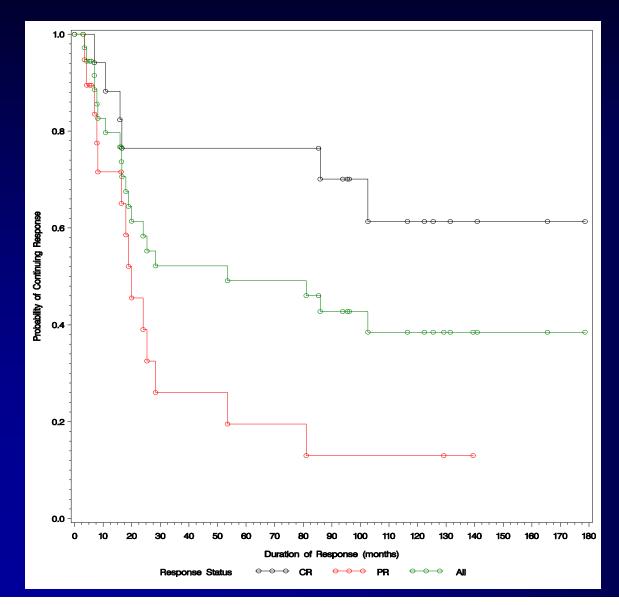
The High-Dose Aldesleukin (IL-2) "Select" Trial in Patients with Metastatic RCC


D McDermott, M Ghebremichael, S Signoretti, K Margolin, J Clark, J Sosman, J Dutcher, T Logan, R Figlin and M Atkins on behalf of the Cytokine Working Group

Disclosures

• Advisory Role:

- Genentech, Glaxo Smith Kline, Novartis, Roche, Onyx, Wyeth
- Honoraria:
 - Novartis, Wyeth
- Research Funding:
 - Novartis

High-Dose IL-2 for mRCC

FDA Approval 1992 for RCC

14% response rate with durable responses in a small percentage of patients

But:

Significant toxicity, cost and limited efficacy

Application narrowed to selected patients treated at a few centers

Background

- Can we pick likely responders before we begin IL-2 therapy?
- Retrospective analyses suggested that clinical characteristics and tumor features could predict for benefit ^{1,2,3,4}
 - UCLA SANI Score
 - Clear cell histology
 - Carbonic anhydrase 9 (CA-9)
- The current trial was conducted to improve the therapeutic index of HD IL-2

Primary Endpoint

- Response Rate
 - To prospectively determine if the RR to HD IL-2 in mRCC patients with "good" pathologic predictive features was significantly higher than a historical, unselected population

Secondary Endpoints

- To prospectively determine:
 - The response rate for patients with "poor" pathologic features
 - To determine prospectively if other predictive and prognostic models (MSKCC¹, UCLA SANI Score²) can help define further the optimal population to receive HD IL2
 - Confirm the predictive value of factors that were associated with response to immunotherapy in other retrospective studies
 - (e.g. CAIX SNPs, B7H1, serum VEGF)

Study Summary

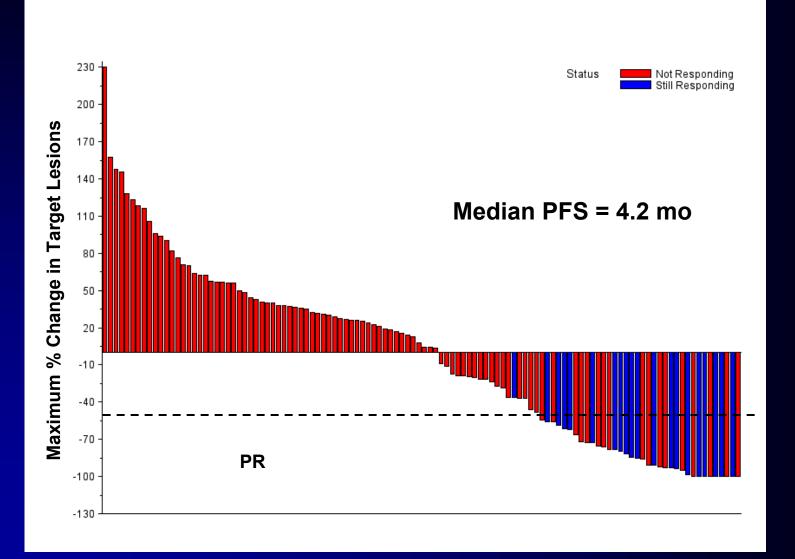
- All patients met eligibility criteria
 - Measurable mRCC of all histologic subtypes
 - No prior systemic rx
 - Candidates for HD IL-2
- Accrual:
 - 120 pts enrolled from Nov 2006 to July 2009 at 14 sites
- Toxicities were as anticipated for this regimen
- Treatment related deaths: 2
- Tumor (98%) and blood (94%) collected on most patients

Patient Characteristics

Characteristics	n=120
Median age, yrs (range)	56 (28-70)
ECOG PS 0/1 (%)	72/24
Prior nephrectomy (%)	99
MSKCC risk factors ¹ (%) 0 (favorable) 1-2 (intermediate) ≥3 (poor)	18 68 15
UCLA SANI Score ² (%) Low Intermediate High	8 85 7

¹Motzer et al. JCO 2002; ²Leibovich et al, Cancer 2003

UCLA SANI Score


- Survival After Nephrectomy and Immunotherapy¹
- Scoring algorithm developed at UCLA from 173 pts who had Nx→ IL-2 based Rx
- Factors that predicted survival and response to IL-2
 - Regional LN status
 - Symptoms
 - Location of mets
 - Sarcomatoid histology
 - TSH level
- Low, intermediate and high risk groups

Efficacy Results

Response*	N (%)
Patients with measurable disease at baseline (n)	120 (100)
Objective response	30 (25)
Complete response	4 (3)
Partial response	26 (22)
Stable disease (> 6 months)	16 (13)
Progressive disease/not evaluable	74 (62)

*Independently reviewed using WHO Criteria

Tumor Shrinkage Plot (n=118)

Statistical Considerations

- After enrollment, Pathology Core at DFHCC determined patient's pathologic risk group
- Goal to use selection criteria to double historical control RR (14%)¹
- Target RR in this "good risk" subset of patients > 28%
- Sample size of 110 pts was estimated to be necessary to enroll 66 "good risk" patients
 – 80% power, 2-sided ά=0.05

Combined Model CAIX Staining Pathology High Low **Risk Group** Good Intermed Good Poor Poor Atkins, et al Clin Can Res, 2005

Pathology Characteristics

Characteristics	N (%)
Histologic Risk Group	
Good	11 (9)
Intermediate	83 (70)
Poor	25 (21)
CA-9 Score	
High (>85%)	78 (67)
Low (<u><</u> 85%)	39 (33)
Combined Score	
Good	74 (63)
	43 (37)
Poor	43 (37)

Response by Pathology Characteristics

Histology risk group	RR (95% CI)	P-value*
Good (n=11)	27% (6%-61%)	0.89
Intermediate (n= 83)	24% (15%-35%)	
Poor (n=25)	28% (12%-49%)	

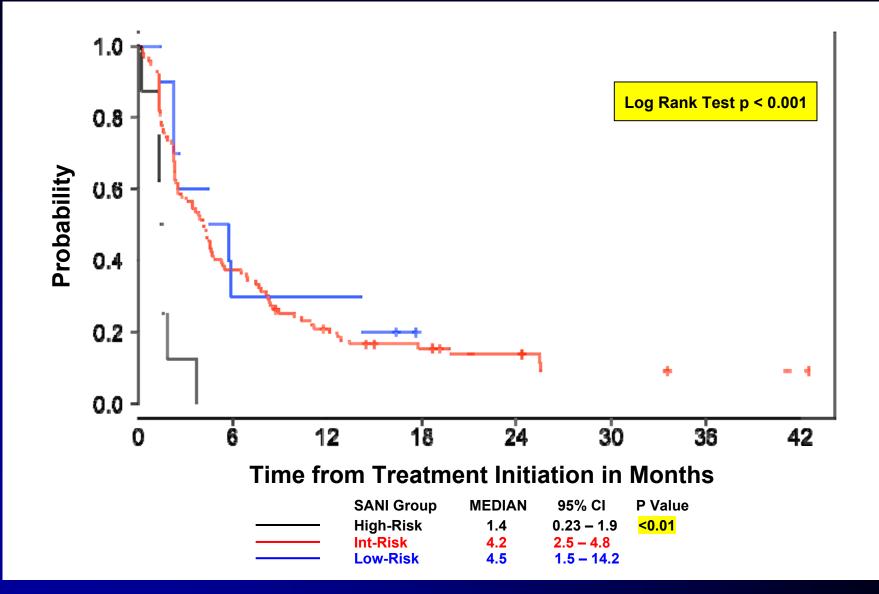
CA-9 Score		
High (>85% n=77)	22% (13%-33%)	0.19
Low (<u><</u> 85% n=39)	33% (19%-50%)	

Combined Score		
Good (n=74)	23% (14%-34%)	0.39
Poor (n=42)	30% (17%-46%)	

Response Comparison

Response*	%
Historical rate	14
IL-2 Select Trial (all pts n=120)	25
	p=0.0014 95% CI=17.5-33.7%
Good Risk Patients (n=74)	23 p=0.042 95% CI=14-34.2%
Likely explanations for improved RR include:	

Likely explanations for improved RR include:


- 1) Enhanced "pre-screening" including fewer with non-CCRCC histologies
- 2) Impact of alternative therapies on IL-2 referrals
- 3) Routine use of cytoreductive nephrectomy
 - Similar medical requirements for candidacy for both
 - Favorable impact on outcome

*Independently reviewed using WHO Criteria

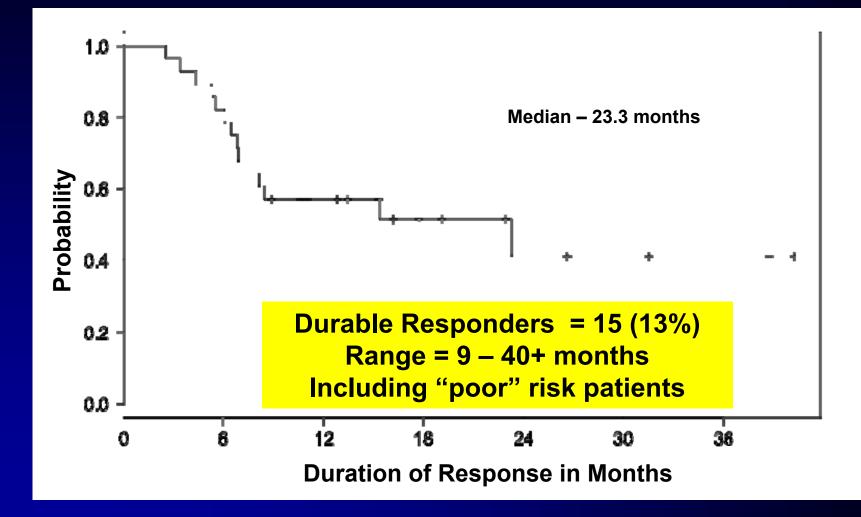
Response by Baseline Characteristics

	RR (95% CI)	P-value*
All Patients (n=120)	25% (18%-34%)	0.0014
Tumor type		
Clear Cell (n=115)	26% (18%-35%)	0.33
Non-clear cell (n=5)	0% (0%-52%)	
MSKCC Risk Group		
Favorable (n=21)	23% (8%-47%)	0.95
Intermediate (n=81)	25% (16%-36%)	
Poor (n=18)	28% (10%-53%)	
UCLA Risk Group		
Low (n=10)	20% (3%-56%)	0.27
Intermediate (n=101)	27% (19%-37%)	
High (n=8)	0% (0%-37%)	

PFS by UCLA SANI Group

Conclusions

- The RR for HD IL-2 in this trial was significantly better than the historical experience, probably due to better pts.
- Clinical and pathologic features (e.g. SANI score and histology) may identify patients unlikely to benefit from HD IL-2
- In this trial, central pathology review and staining for CA-9 did not improve pt. selection to benefit from HD IL-2
- Potential explanations
 - Host/not tumor factors may play a larger role
 - Tumor factors important but others better than CA-9
 - Samples are not "representative" due to lack of standards for tumor processing at community centers and lack of adequate representation of primaries and mets


Ongoing Studies

- Efforts to confirm other predictive tumor and hostderived biomarkers are ongoing.
 - CA-9 SNPs, B7H1, B7H3
 - Serum VEGF, others
- Given the high RR and comprehensive tissue collection in this trial, an improved model for IL-2 patient selection will likely emerge from these efforts.
- Lessons from this work may guide the development of "targeted immunotherapies" (e.g. CTLA-4, PD-1 antibodies) in mRCC.
- Early studies with these agents suggest that they deliver durable benefit with less toxicity.
 (e.g. MDX-1106 Sznol et al, Abstract #49563 ASCO 2010)

Commentary

- Confirming hypotheses in well designed, prospective trial is essential
 - Until its value as a predictive marker can be confirmed, application of CA-9 IHC staining should be limited.
 - Efforts to standardize RCC tissue collection should be considered in future trials.
- While the longstanding criticisms of HD IL-2 therapy remain valid:
 - Efficacy remains limited
 - Cost remains high
 - Toxicity remains severe
- At the current time, IL-2 based immunotherapy is the only approach that can produce a response duration curve like this:

Response Duration Curve

Acknowledgements

CWG Participants

Beth Israel Deaconess

Vanderbilt Univ.

Our Lady of Mercy Pittsburgh Cancer Institute Indiana University Wayne State University

Loyola Medical Center Univ. of Virginia City of Hope Dartmouth Hitchcock Univ. of Washington Earl A. Chiles Research Institute

Adjunctive Members UCLA Roswell Park Univ. of Cincinnati David McDermott, MD (PI) Michael Atkins, MD Daniel Cho, MD Jeffrey Sosman, MD Igor Puzanov, MD Janice Dutcher, MD Leonard Appleman, MD Theodore Logan, MD Ulka Vaishampayan Larry Flaherty, MD Joseph Clark, MD Geoff Weiss, MD **Robert Figlin, MD** Marc Ernstoff, MD Kim Margolin, MD Brendan Curti, MD Walter Urba, MD

Allan Pantuck, MD Michael Wong, MD Leslie Oleksowicz, MD

DF/HCC Biostatistics Core

Meredith Regan, ScD Musie Ghebremichael, ScD

DF/HCC Pathology Core Lab

Sabina Signoretti, MD

Laboratory Investigators

James Mier, MD David Panka, PhD Arie Belldegrun, MD Allan Pantuck, MD Bradley, Leibovich, MD Eugene Kwon, MD

Study Coordinators

Meghan French Andrew Percy Gretchen Chambers, RN

Supported by the DF/HCC Renal Cancer SPORE Grant Project 4 and Novartis Pharmaceuticals