Cytokines in Cancer Immunotherapy

Kim Margolin, M.D. University of Washington Fred Hutchinson Cancer Research Center Seattle Cancer Care Alliance

> iSBTc Immunology Primer October 1, 2010

Presenter disclosure information

- Kim Margolin, M.D., UW/FHCRC/SCCA
- No financial support for research except site PI budget support
 - BMS
 - GSK
 - Lilly
 - Pfizer
 - Roche
- DMC
 - Cougar/J and J
 - Medimmune

Immunobiology of Cytokines

For discussion

- Structure/function relationships
- Cellular source/stimuli for synthesis/secretion
- Target cell(s)/receptor structure
- Signaling induced by cytokine binding
- Preclinical applications
- Cytokine gene transfer/vaccine
- Clinical application/status

Not for discussion

- Cytokines/polymorphisms in pathogenesis
 - Malignancy
 - Autoimmune disease
- Cytokine-directed therapies for nonmalignant conditions
- Complex interactive cytokine networks, innate
- Alternative structures (immunotoxins, immunocytokines)
- Intratumoral delivery

GM-CSF as immunotherapy

- Cells of origin
 - Th1, Th2
 - Others include epithelial, fibroblast, *tumor*
- Target cell: immature DC (& myeloid progenitor)
- Biological functions
 - Stimulation of T cell immunity via effect on APC
 - Myeloid cell proliferation, differentiation
- Clinical development
 - Hematopoietic support
 - Not a potent stand-alone cytokine in cancer
 - Adjuvant for melanoma: (-) results+/- peptide vaccine
 - Immunocytokine in prostate cancer DC product
 - Transgenic expression (GVAX) [and other cytokines]

Interferons

Type I

- $-\alpha$: from neutrophils, $m\phi$
- $-\beta$: from fibroblasts, epithelial cells
- Type II γ -IFN, type 1, from T, NK cells

Immunomodulatory effects

- MHC class I/II upregulation
- Modulation of T/NK cell cytolytic activity
- Modulation of macrophage/DC function
- Decreased Treg/increased Th1

Interferons (cont.)

- Direct effects on tumor cells
 - MHC upregulation
 - Antiproliferative/pro-apoptotic effects
- Anti-angiogenic effects
 - IP-10
 - Thrombospondin

IFN autoimmunity/ adjuvant benefit in melanoma

IFN in melanoma, other malignancies remains a work in progress

Interleukin-2

- Short chain type I cytokine
- Four α -helical bundles
- Produced by activated T cells
- TCR/CD3 engagement plus CD28 ligation required
- Main targets are T, NK cells
- Stimulates immune responses
 and prevents tolerance
- Also downregulates immune response: role in T_{reg} development/activity

Interleukin-2

"T cell growth factor" Produced by Th1 cells

- Many cell types express IL-2R
 - B, NK/NKT, monocytes
 - Affinity, functions depend on subunit $\alpha\beta\gamma$ expression

In Vivo Effects of IL-2

- Induction of multiple cytokines
 - TNF, interferon-gamma, GM-CSF, M-CSF, G-CSF, IL-4,
 IL-5, IL-6, IL-8, IL-10
- Increase in soluble IL-2r
- Lymphopenia followed by rebound
- Increased NK activity (during rebound)
- Increased CD25, HLA-DR expression on T-cells
- Decreased PBMC proliferative responses
- Tissue infiltration by lymphocytes
- Eosinophilia
- Neutrophil chemotaxis defect

Pioneering NCI Extramural IL-2 studies studies

Biology/source

- T cell growth factor
- Jurkat source
- Recombinant E. coli

Preclinical models

- Toxicities from capillary leak
- Toxicities vary by species
- Dose-dependent activity

Early clinical studies<u>+</u>LAK

Supportive role in adoptive cell-Rx strategies

In solid tumors

- With LAK cells
- Single agent high/low doses
- With α -IFN
- With other cytokines
- With chemotherapy
- Toxicity modulation
- Biological predictors of benefit
- In heme malignancies
 - Preclinical activity
 - Clinical benefits not achieved

Responses in melanoma

IL-2 Grade 3-4 Toxicity

	NCI-SB HD IL-2	CWG HD IL-2	
Median Doses per Course	12 (28)	68% (19 doses)	
Death	0	1%	
Hypotension	36.4%	56.8%	
Pulmonary	4.2%	13.7%	
CNS orientation	10.2%	14.7%	
CNS consciousness	2.5%		
Infection	2.8%	3.2%	
Nausea/vomiting	13.4%	9.5%	
Diarrhea	9.2%		
Hyperbilirubinemia	3.2%	11.6%	
ALT	3.2%		
Creatinine > 8.0 mg/dL	1.1%	13.7% (gr 3-4)	
Oliguria (< 80 ml/8h)	12%		
Atrial Arrhythmia	4.2%	8.4% (all cardiac)	
Malaise	20.5%	3.2%	

Severe toxicities of high-dose IL-2

	Incidence		
Grade 3 or 4 Toxicity	Fyfe et al (1995) N = 255 (% of patients)	Rosenberg et al (1994) N = 149 (% of IL-2 courses)	
Hypotension	74	57	
Pulmonary (dyspnea)	17	10	
Renal (creatinine elevation)	14	10	
Hepatic (hyperbilirubinemia)	21	19	
CNS	32	28	
Myocardial injury (ischemia, infarction, myocarditis)	6	2	
Arrhythmias (all grades)	14	5	
Infection	6	3	
Thrombocytopenia	21	29	
Death	4	1	

Immune cell subsets

FNA

PBMC in vitro time course

PBMC in vivo time course

>5 >4 >2 1 >2 >4 >5

(b)

Upregulated after four doses of IL-2 MHC classil DR beta 1

MEN-1 multiple endocrine neoplasia Insulin receptor

Downregulated after four doses of IL-2

TRAF-6=TNF receptor-associated facto

Tubulin alpha 4

CDC28 protein kinase 2

Cycling E1 Hemoglobin alpha

: CD44-pgp-1 CD49E integrin alpha 5 MHC class II-dp alpha Tubulin gamma 2 MAA interferon-induced cellular resistant mediator protein PIG 12 p53-inducible gene MHC class II II-A 2 MHC class II II-A 2 Stamicaclin

(a)

How does high-dose IL-2 work?

Multiple hypotheses from animal data, but rigorous human data lacking.

Gene expression profiling on FNA of tumor, serial PBMC in melanoma patients on HD-IL-2

Phase III Trial of High-Dose IL-2 ± Peptide Vaccine in Patients With Metastatic Melanoma

- Primary endpoint: RR
- Secondary endpoints: toxicity, PFS, quality of life, and immunologic monitoring
- Central HLA typing, pathology review, and blinded response assessment performed at the National Institutes of Health

High-Dose IL-2 ± Peptide Vaccine: Results

PFS

OS

Treatment	RR* (%)	PFS (mos)	OS (mos)
High-dose IL-2	9.7	1.6	12.8
High-dose IL-2 + vaccine	22.1	2.9	17.6

Adoptive T-Cell Therapy and Intensive Myeloablative Chemoradiation: Results

IL-2: Current and future

- Structural alterations
- Toxicity modulation without loss of activity
- Combinations
 - Anti-angio/cytotoxics/STIs/other cytokines
 - Vaccines (melanoma peptides enhanced IL-2)
- Greater insight into mechanisms
 - Renal "Select" trial to validate prior observations re: histology, hypoxia genes
 - Melanoma "Selection" trial to study immune polymorphisms, tumor gene expression
 - Autophagy? (Lotze)

Interleukin-4

Pleomorphic Th2 cytokine Net effects depend on milieu – Mainly a B cell-stimulator – Inhibits non-specific NK activity Enhances other adaptive immune functions Growth factor for Th2 Promotes proliferation, cytotoxicity of CTL Stimulates MHC class II expression Contributes to DC maturation

Enhances m
tumorcidal activity

Interleukin-4

Promising preclinical data, especially transgenic secretion by tumor Clinical experience limited Studied like IL-2 at MTD Unfavorable therapeutic index Used routinely to elicit i-moDC from PBMC - Used ex vivo w/GM-CSF – Shares some structure, function with IL-13

IL-4 and IL-13

Similarities

- Predominantly antiinflammatory effects
- Favor Th₂ responses
- Partially common receptor
- Promotes Ig class switch
- Used w/ GM-CSF \rightarrow moDCs

Assortment of receptor subunits depend on cell type

Differences

- IL-13 activity on monocyte/mΦ cells
- IL-13 lacks B, T cell effects
- IL-13 receptors on tumor cells, especially glioma
 - Immunotoxins
 - Chimeric T cell Ag receptor

IL-13 and IL-4 receptor combinations and binding

IL-6 Tumor source – Unfavorable prognostic for renal cancer Important growth factor for myeloma Mediates paraneoplastic thrombocytosis Adaptive system B cell growth/differentiation – CTL differentiation, Type 2 responses Preclinical data suggested antitumor activity Clinical data – Too toxic

-?tumor promotion \rightarrow Blockade may be therapeutic

IL-7

Signaling/gene expression JAK 1,3 \rightarrow STAT 5 PI3K \rightarrow mTOR activation

Regulation contrasts with IL-2, IL-15

Unique to IL-7 is receptor downregulation IL-7 accumulates during lymphopenia due to \downarrow utilization

<u>Mediates homeostatic expansion of naïve</u> <u>cells during lymphopenia (greatest clinical</u> <u>potential, possibly with IL-15, IL-21)</u>

IL-15

- Unique γ_c cytokine—complexes with receptor from cell of origin, then signals target cell
- With IL-2 and IL-7 in γ_c cytokine family promoting T cell growth, differentiation

IL-2 and IL-15 compared

<u>IL-2</u>

- Activated T, B express
 high-affinity αβγ
 receptor
- Prolif/differentiation NK,
 T, B
- <u>Promotes</u> activationinduced cell death
- Maintenance of Treg

-/- KO develops autoimmunity

<u>IL-15</u>

- Produced by DC, monos
- Surface-bound on
 DC/mono ↔ receptors on
 NK, CD8a1 cells
- Promotes proliferation
 NK, T, B, memory CD8
- <u>Inhibits</u> AICD
- Does not support Treg
- -/- KO is lymphopenic

IL-12

Link between innate, adaptive immune response

- Receptors on variety of immune cells
- Induces IFN-γ, a prototypical type I cytokine

Potent inducer of counterregulatory type 2 cytokines

- Emerged in clinical trials for advanced malignancy
- Schedules and doses may be manipulated

Clinical potential

- Vaccine adjuvant
- Induction of anti-angiogenesis
- In combinations e.g. w/ α -IFN, IL-2?

Jak/Stat Signaling: IL-12 versus IL-2

IL-21 is a pleiotropic cytokine

Nature Reviews | Drug Discovery

Interleukin-21 and its receptor

Clinical activity of IL-21

Disease Type	Trial Design
Melanoma	¹ Phase I: Alternative schedules
	5+9 schedule x 3 and
	3x/week
	² Phase IIa: 5+9 schedule x 3
	³ NCIC PHASE II: 5+9 schedule x 3, q 8 weeks Treatment-naive; bulky disease excluded
Renal cell Cancer	IL-21 plus Sunitinib
Lymphoma	⁴ IL-21 and Rituximab in Relapsed/Refractory Indolent Lymphoma

Thank you

Any questions?