

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History*

Noninvasive positron emission tomography (PET) imaging of *Sleeping Beauty* (SB) modified CD19-specific T cells expressing HSV1-Thymidine kinase

Pallavi R.Manuri, PhD. Department of Pediatrics Research

Adoptive Cell Therapy

- Development of engineered T cells using
 - T-cell receptors
 - Chimeric antigen receptors (CARs)
- Methods of genetic moditication
 - Viral
 - No-viral

CD19-specific CAR

Rationale

However, to improve the design, application and evaluation of adoptive T-cell therapy requires monitoring methods that can

- Detect
- Locate and
- Serially quantify the cell-mediated immune responses

Rationale

Currently monitoring methods are chiefly invasive techniques

- Histology
- Flow cytometry
- •Q-PCR and/cytokine analysis

In contrast, Positron emission tomography (PET) is a

- •Noninvasive, accurate, and
- Sensitive whole-body imaging technology allowing
- •Repetitive measurement in vivo

Herpes Simplex Virus 1- thymidine kinase (HSV1-tk)

• Expression of reporter genes and use of corresponding reporter probes (radiotracers) labeled with positron-emitting radionuclides.

The specificity and/or sensitivity of HSV1-tk were altered by

•Mutations in the nucleoside binding region (HSV1-sr39tk)

•Inactivation of the nuclear localization signal (NLS) of HSV1-tk Arg25-26 were replaced by Gly25-26

•Addition of the nuclear export sequence (NES)

Generation of CD19-specific T cells capable of being imaged non-invasively by PET

Scheme of expansion of T cells on artificial antigen presenting cells

Co-expression of CD19-specific CAR and TK

Redirected specificity of CD19CAR+TK+ T cells

Effector:Target ratio

Specificity towards nucleoside analogs

Sensitivity towards Ganciclovir

In vitro accumulation of ³H-FEAU

In Vivo Imaging of CD19CAR+TK+ T cells with PET

7.5x 10⁶ T cells subcutaneously and 100μCi of ¹⁸F-FEAU intravenously

In Vivo Imaging of CD19CAR+TK+ T cells with PET

15x 10⁶ T cells subcutaneously

3 dimensional reconstruction of CD19CAR+TK+T cells imaged by PET

Summary

- Co-expression of a CD19-specific CAR and HSV1-tk by SB transposition.
- SB modified CD19CAR+TK+ T cells
 - visualized spatio-temporally by μ PET using ¹⁸F-FEAU
 - ablated in the presence of ganciclovir and also
 - Have the ability to kill CD19⁺ tumor targets.

Implication

<u>Clinical Significance:</u> in non-invasively monitoring the persistence and trafficking SB modified adoptively transferred CD19specific T cells.

Ongoing work: in vivo tumor model is being worked out

Thanks

Cooper lab

Kirsten Switzer Tiejuan Mi Ling Zhang Harjeet Singh Helen Huls Gelovani lab Amer Najjar Leo Flores II

- Carl June
- Bruce Levine

Perry Hackett

David Largaespada

