Antibody-Targeted Vaccines

Tibor Keler, PhD

Monoclonal Antibodies as Therapeutics

- Unconjugated mAbs: Passive vaccines
 - Target the cancer or pathogen or pathogenic molecule

- Conjugated mAbs: Toxin/radionuclide conjugates
 - Target the cancer

- Antibody-targeted vaccines: Antigen conjugates
 - Target the immune system to to respond to cancer or pathogen

In vivo antigen Delivery

Targeting to endocytic receptors on DCs and other APCs

Antibody Specificity:

Fc receptors C-type lectins Complement receptors MHC

- Enhance efficacy of protein vaccines
- Improved cross-presentation to CD8+ T cells
- Broad response to multiple epitopes

Antibody-Targeted Vaccines

Recombinant fusion proteins

Fab-antigen

Chemical conjugation

Targeting C-Type Lectin Receptors

Antibody	Specificity	APC Binding in human tissues	Affinity
			KD (M)
B11	Mannose	Dermal DCs, Interstitial DCs,	~7 x 10⁻¹⁰
	receptor	macrophages in most tissues	
3G9	DEC-205	DCs in lymph nodes, tissue DCs	~2 x 10 ⁻¹⁰

APC targeting

Vaccine Uptake by human DCs in vitro

Confocal microscopy images of human DCs

Targeted delivery to APCs in vivo

Vaccine Uptake – in vivo

Skin punch-biopsies taken from injection site and opposite arm-48 hrs post injection of 1mg B11-hCGβ, i.d.

IHC - rabbit anti-hCG β

Cross-Presentation

Cross-presentation of MR-targeted antigen

Raphael Clynes, Department of Medicine and Microbiology, Columbia University, NY

Breadth of T cell response

Presentation of multiple NY-ESO-1 MHC II epitopes with α -DEC-205-NY-ESO-1

Presentation of multiple NY-ESO-1 MHC I epitopes with α -DEC-205-NY-ESO-1

Data from G. Ritter, Ludwig Institute for Cancer Research

Translation to clinical studies

Clinical Vaccine Candidates

CDX-1401

NY-ESO-1 – Cancer-testis antigen

- expressed by sarcomas, melanoma and other tumors
- immunogenicity in humans well documented
- Adoptive transfer of NY-ESO-1 specific T cells can lead to significant clinical regressions

CDX-1307 (α -MR-hCG β) - Clinical Trial Design

Phase 1 Study – Advanced breast, colorectal, and pancreatic cancers

Summary of hCG- β -specific humoral responses

Humoral responses to purified hCG β were measured by ELISA. The values reported represents the maximum titer (reciprocal dilution) for each patient that received at least 3 doses of vaccine.

Induction of hCG- β -specific T cell responses

Cellular responses were measured by IFN- γ ELISpot assay using T cells (CD4 and CD8) isolated from patient PBMCs after a 7-day in vitro stimulation with hCG β -derived peptide pool. Values represent the highest hCG β -specific T cell response (with control peptide subtracted) for patients treated in combination with TLR agonists. Significant T cell responses were not observed in cohorts without TLR agonist.

Elevated hCG-β Levels Correlate with Reduced Survival in Patients with Invasive (T2-T4) Bladder Cancer

R. Iles 1996

PHASE 2 TRIAL IN BLADDER CANCER: The "N-ABLE" Trial Neoadjuvant and Adjuvant Bladder Cancer Trial

Randomized (1:1), controlled trial (n=60) in hCG- β expressing, muscle-invasive bladder cancer

- Neoadjuvant setting allows for pathologic assessment of tumor response to therapy (necrosis, immune infiltration, persistence of hCG-β expression).
- Outcome measures: PFS (primary), OS, safety, immune response (during neoadjuvant chemo and adjuvant vaccine), tumor response (radiographic and pathologic)
- Initial data anticipated late 2011 2012

Conclusions

- Delivery of protein antigens to endocytic receptors on APCs results in:
 - Robust humoral/celluar immunity
 - Requires concomitant administration of adjuvants
- Antibody-targeted vaccines provide a practical approach to vaccines:
 - Based on well established antibody technology
 - Off-the -shelf and not HLA specific
 - Can be used for multiple antigens
- Early clinical data demonstrate feasibility, safety, and immunogenicity

Acknowledgements

Collaborators

Ralph Steinman – Rockefeller U. Michel Nussenzweig – Rockefeller U. Sarah Schlesinger – Rockefeller U. Raphael Clynes – Columbia U. Gerd Ritter – Ludwig Inst. Can. Res. Robert Seder- NIH

Celldex Team

Clinical: Tom Davis Beth Crowley Mike Yellin Jennifer Green

Research: Henry Marsh LiZhen He Laura Vitale Venky Ramakrishna Russ Hammond Larry Thomas

Clinical Investigator

(CDX-1307 program)

Michael Morse - Duke University Medical Center

Robert Chapman- Henry Ford Hospital

Ding Wang- Henry Ford Hospital

John Powderly - Carolina BioOncology Institute