iSBTc Biomarkers Symposium

30th September 2010, Washington

"Harmonization of Immunological Monitoring Across Institutions"

C.M. Britten

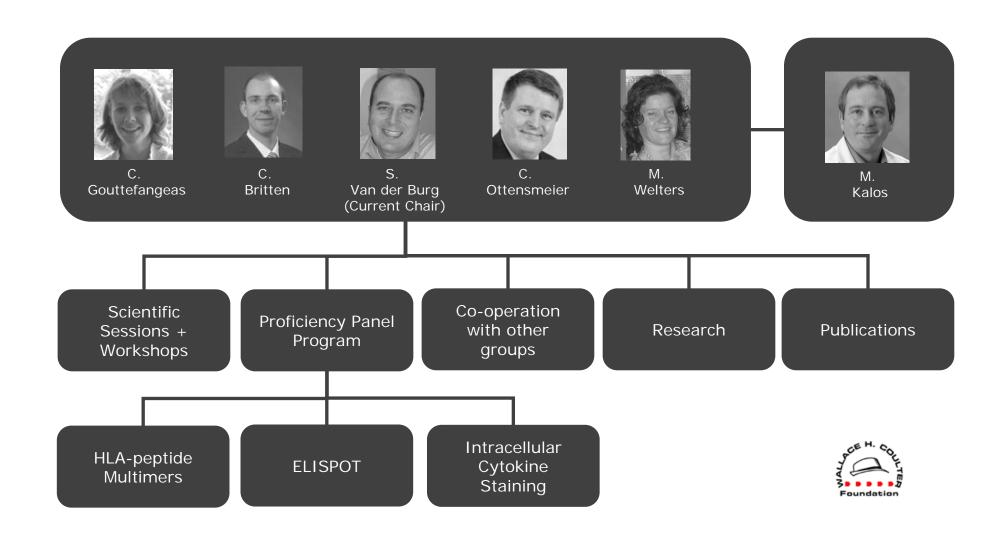
CEDRIK M. BRITTEN

The following relationships exist related to this presentation:

50% Employee (University Medical Center of the Johannes Gutenberg-University, Mainz, Germany)

50% Employee (BioNTech AG, Mainz, Germany)

Today's Panel Discussion


9:15 am-9:45 am Panel Discussion

Panelists: Session 1 Speakers; Sylvia Janetzki and Michael Kalos

- How can assays be "harmonized" across institutions?
- What should be included in all publications which include immunological monitoring data?

CIP - Activities

Proficiency Panel Programs

In 2005 two independent harmonization initiatives have launched their proficiency panel programs

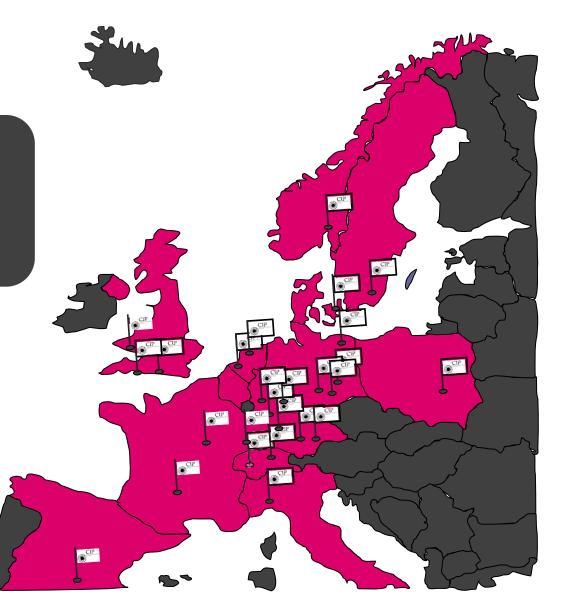
CIMT Immunoguiding Program ("CIP")

as part of the Association for Immunotherapy of Cancer (www.cimt.eu)

CIC Proficiency Panel Program

as part of the Cancer Research Institute

(http://www.cancerresearch.org/CancerVac cineConsortium.html)



CIP – Proficiency Panel Programm

Participants

- 40 participating labs
- 12 European countries

CIMT - Recent/New panels

CIP_ID07_2009_MUL (experiments completed)

Assay(s): HLA-Peptide Multimers

Organizers: C. Gouttefangeas, K. Laske, S. Heidu (Tuebingen),

S. Hardrup (Herlev)

CIP_ID08_2010_GAT (experiments completed)

Assay(s): Gating Panel (ICS Data)

Organizers: M. J. P. Schoenmaekers-Welters, S.H. van der Burg (Leiden)

CIP_ID09_2010_ELI (recruiting completed)

Assay(s): IFN- γ ELISPOT – Media used for thawing and freezing

Organizers: H. Filbert, S. Attig, C. Britten (Mainz)

CIP_ID010_2010_ELI (recruiting will begin Q3/2010)

Assay(s): IFN- γ ELISPOT for in vitro stimulated T cells

Organizers: L. low, A. Mander, C. Ottensmeier (Southampton)

CIP_ID011_2010_MUL (recruiting will begin Q3/2010)

Assay(s): HLA-Peptide Mutimers – Reference Samples Organizers: S. Singh and S.H. van der Burg (Leiden)

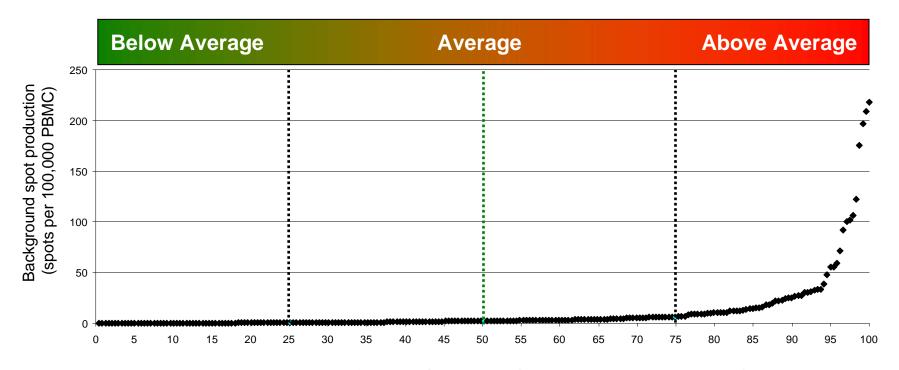
CIC - Proficiency Panel Program

```
2005: 1<sup>st</sup> Elispot panel (36 labs)
2006: 2<sup>nd</sup> Elispot panel (29 labs)
2007: 3<sup>rd</sup> Elispot panel (35 labs)
        1<sup>st</sup> Multimer panel (29 labs)
        1<sup>st</sup> ICS panel (28 labs)
        1<sup>st</sup> CFSE panel (21 labs)
2009: 4<sup>th</sup> Elispot panel (41 labs)
             Serum task force
         2<sup>nd</sup> Multimer panel (20 labs)
         2<sup>nd</sup> ICS panel (31 labs)
2010: 1st ICS Gating Panel (in wide collaboration)
         1<sup>st</sup> Luminex Panel (in collaboration)
         5<sup>th</sup> Elispot and 3<sup>rd</sup> Multimer Panel
```

Aims of Proficiency Panel Programs

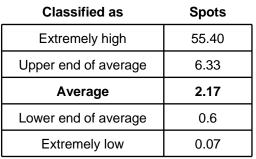
"Quality Assurance (QA)"

Provide immediate feed-back about performance relative to the group (or to a dynamic reference value)


"Assay Harmonization"

Use the collected data to systematically investigate the performance of subgroups and deduce harmonization guidelines.

"Protocol Optimization"


Use the collected data to systematically identify critical process steps (stimulus for MIATA).

QA: Background spot production expected from a virtual lab with average test performance

Background spot production per 100,000 PBMC

Percentile	Classified a	
95th	Extremely hi	
75th	Upper end of av	
50th	Average	
25th	Lower end of av	
5th	Extremely lo	

Average:
0.6 - 6 spots per 100,000 PBMC

Median BG:
2 spots per 100,000 PBMC

Harmonization - Response Determination

	Overall (no filters)	
Response Determination Method	Response Detection Rate N=282	False Positive Rate N=196
S > 2-fold BG	74%	17%
S > 2-fold BG and > 5/100,000	59%	3%
S > 2-fold BG and > 10/100,000	49%	1%
S > 3-fold BG	66%	9%
S > 3-fold BF and > 5/100,000	54%	1%
S > 3-fold BG and > 10/100,000	45%	0%
S > 4-fold BG	59%	7%
S > 4-fold and > 5/100,000	49%	1%
S > 4-fold and > 10/100,000	42%	0%
$S \ge 4$ -fold and $\ge 5/100,000$	49%	1%
T-test	76%	10%
DFR(eq)	75%	11%
DFR(2x)	61%	2%

Harmonization is needed to increase comparability of results generated accross insititutions

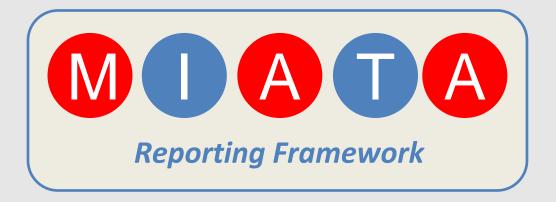
Harmonization – ELISPOT Recommendations CIP

- Refrain from using allogeneic APCs
- Use triplicate wells for each antigen
- Introduce a resting time of the PBMCs before they are added to the ELISPOT plate
- Add an optimal cell number per well (≥ 4 x 10⁵
 lymphocytes per well recommended by CIP labs)
- Use serum-free test conditions
- Use a scientifically sound method for response determination (DFR method proposed by Moodie 2010)

CIC - Initial Elispot Harmonization Guidelines

- A. Establish lab Elispot SOP for:
- A1. Counting method for apoptotic cells in order to determine adequate cell dilution for plating
 - A2. Overnight resting of cells prior to plating
- B. Use only pretested serum with optimal signal: noise ratio
 - C. Establish SOP for plate reading, including:
 - C1. Human auditing during reading process
 - C2. Adequate adjustment for technical artifacts
 - D. Only let well trained personnel conduct assay

Large-scale Harmonization activities can lead to

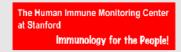

- dynamic reference values to rank test performance,
- increased comparability of results generated across institutions,
- improved assay performance in a group,

...and thus accelerate clinical development of new cancer immunotherapies.

Beginners and **highly experienced** labs can benefit from harmonization efforts.

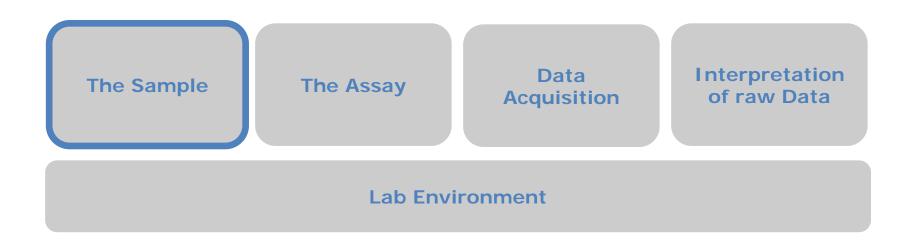
Minimal Information About T cell Assays (MIATA)

Announced at CIMT2009 and in Immunity in 2009



www.miataproject.org

"MIATA"-minimal information about T cell assays." Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, Old LJ, Romero P, Hoos A, Davis MM. Immunity. 2009 Oct 16;31(4):527-8.


MIATA – 5 Modules

The Sample The Assay Data Acquisition Interpretation of raw Data

Lab Environment

The Sample - 1D: Quality of cell material:

Required:

mean recovery and viability of cell material method used to determine the cell recovery and viability

Optional:

An expanded list of details on the quality control of the cell material that was tested (of great interest would be (i) specific cut-offs for recovery and viability (if applicable), (ii) how material was treated that did not reach the cut-off and (iii) the mean time laps at which viability was tested relative to the time of thawing and the experiment).

MIATA – Consensus Workshop in Washington

Facilitator:

A. Hoos

Support:

Moderators:

Module 1: C. Britten

Module 2: S. Janetzki

Module 3: K. Odunsi

Module 4: S. van der Burg

Module 5: M. Kalos

MIATA – Consensus Workshop in Washington

Public Consultation Period

Consensus Workshop

Guidelines Version 2.0

- Public Consultation PeriodConsensus Workshop
 - Webinars

Guidelines
Version 1.0

Available at website

Publication of Guidelines only after broad acceptability and support for MIATA has been obtained

Guidelines Version 0.0

- Published at website
- Announced in Immunity (2009, Vol. 31, p527)

Level of Acceptance

The assay harmonization efforts conducted over the past 5 years further led to the identification of several **critical experimental process steps**.

As a consequence of this **MIATA** was launched as a community driven reporting framework for T cell experiments.

Published reports of T cell experiments should include sufficient information on all critical test variables and process steps.

CIMT – Co-operations / Acknowledgements

Response Determination for ELISPOT Assays

Zoe Moodie (SHARP, Seattle) and Leah Price (University of New York)

ELISPOT – Serum Task Force

CRI/CIC (S. Janetzki)

Reporting Framework for T cell Assays - MIATA

Core Team Members, Panelists and all Contributors

The Human Immune Monitoring Center at Stanford

Immunology for the People!

Biomarker development in immunotherapy

iSBTC-FDA Biomarker Task Force

CIP - Team (WCF)

Thank you for your attention

CIMT – 9th Annual Meeting 2011

May 25th-27th 2011 in Mainz

Targeting Cancer: Road-Map for Success

Confirmed speakers:

J. Mac Cheever (University of Washington)

Adrian Bot (MannKind Corporation)

Thorbald van Hall (Leiden Medical Center)

Lisa Butterfield (University of Pittsburgh)

Francesco Marincola (Trans-NIH Center for Human Immunology)

Jean-Yves Bonnefoy (Transgene)

Phil Greenberg (Seattle)

Vincent Brichard (GSK)

Axel Hoos (BMS)

Topics include:

Cellular Therapy

Therapeutic Vaccination

Therapeutic Antibodies

Immunomonitoring

New Targets

Cancer Biology

Immunotherapy

Immunosuppressive Mechanisms

Innate Immunity