Circulating regulatory T-cell function and overall survival in metastatic castration-resistant prostate cancer (mCRPC) patients treated with poxviral-based vaccine

Matteo Vergati, M.D.

Cellular Immunology Group
Laboratory of Tumor Immunology and Biology, CCR, NCI, NIH

iSBTc 24th Annual Meeting
October 31st, 2009
BACKGROUND

Increased levels of regulatory T cells (Tregs) have been reported in both the tumor microenvironment and in the peripheral blood of patients with several types of malignancies…

A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer.

The prevalence of FOXP3+ regulatory T-cells in peripheral blood of patients with NSCLC.

Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas.

Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer.

Prognostic impact of tumor infiltrating FOXP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis.

Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy.

Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma.

Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients.

...AND are generally related to poor clinical outcome
Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer.
Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schom J, Tsang KY.

Frequency of CD4⁺CD25^{high}FoxP3⁺ Tregs

Function of CD4⁺CD25^{high}FoxP3⁺ Tregs
Peripheral Tregs and overall survival in metastatic castration-resistant prostate cancer (mCRPC) patients treated with a poxviral-based vaccine (PSA-TRICOM)
A vaccine formulation consisting of recombinant vaccinia (rV) or fowlpox (rF) virus, encoding:

<table>
<thead>
<tr>
<th>Costimulatory Molecule</th>
<th>Ligand on T cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7-1 (CD80)</td>
<td>CD28/CTLA-4</td>
</tr>
<tr>
<td>ICAM-1 (CD54)</td>
<td>LFA-1</td>
</tr>
<tr>
<td>LFA-3 (CD58)</td>
<td>CD2</td>
</tr>
</tbody>
</table>

TRICOM = B7-1/ICAM-1/LFA-3

PSA/TRICOM = PSA/B7-1/ICAM-1/LFA-3 (PROSTVAC)

All vaccines contain: rV- as a prime vaccine
avipox (fowlpox, rF-) as multiple booster vaccines
Randomized Multicenter Placebo-controlled Vaccine Therapy Trial in Castrate-resistant Metastatic Prostate Cancer Patients

Patients (n = 125)
- Metastatic prostate cancer (CT or bone scan +)
- Gleason score ≤ 7; no visceral disease
- Chemotherapy naïve

Vaccine: rV, rF-PSA-TRICOM (PROSTVAC) + GM-CSF

Control arm: empty vector

Randomization: 2:1 (double blind)

P.I.: P. Kantoff, Dana-Farber Cancer Center

Analyses: W. Godfrey, BNIT
B. Blumenstein, statistician
Randomized Multicenter Placebo-controlled Vaccine Therapy Trial in Castrate-resistant Metastatic Prostate Cancer Patients

Observations:

A. Time to Progression: no difference in arms

B. Median survival at 4 years
 Placebo: 16.6 months
 Vaccine: 25.1 months (p=0.006)

C. 40% reduction in death rate in vaccine arm

Phase III Trial Planned
PSA-TRICOM - PHASE I/II CLINICAL TRIAL: STUDY DESIGN

- Androgen refractory
- Metastatic disease

Patients treated → Vaccinia PSA-TRICOM Priming Dose → Monthly Fowlpox PSA-TRICOM Boost

Primary Endpoint
Immune Response

Secondary Endpoint
Clinical response

Evaluation Predicted Survival (HN)
Evaluation Immune Response

Re-staging Scans Q 3 months

Evaluation Immune Response
Evaluation Overall Survival

D1 D29 D57 D85 D113 D141 D169

V F F F F F F
Halabi Nomogram to Predict Survival

<table>
<thead>
<tr>
<th>Points</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral Disease</td>
<td>Yes</td>
<td>No</td>
<td>8-10</td>
<td>2-7</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason Score</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>20</td>
<td>70</td>
<td>300</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Status</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline PSA</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>1000</td>
<td>2000</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDH</td>
<td>10</td>
<td>20</td>
<td>70</td>
<td>150</td>
<td>500</td>
<td>2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>12-Month Survival Probability</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>24-Month Survival Probability</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td>Median Survival Time (months)</td>
<td>72</td>
<td>48</td>
<td>36</td>
<td>30</td>
<td>24</td>
<td>18</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
OVERALL SURVIVAL IN PSA-TRICOM CLINICAL TRIAL

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Median PS (mos)</th>
<th>Actual Median OS (mos)</th>
<th>Difference in Survival (mos)</th>
<th>Patients with OS longer than PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>17.4</td>
<td>26.6</td>
<td>9.2</td>
<td>22/32 p=0.05*</td>
</tr>
<tr>
<td><18 PS</td>
<td>12.3</td>
<td>14.6</td>
<td>2.3</td>
<td>10/17 p=0.63*</td>
</tr>
<tr>
<td>≥18 PS</td>
<td>20.9</td>
<td>Not reached</td>
<td>23.7+</td>
<td>12/15 p=0.035*</td>
</tr>
</tbody>
</table>

*two-tailed p-value is listed.

<table>
<thead>
<tr>
<th>Pts with Predicted Survival <18 months</th>
<th>Pts with Predicted Survival ≥18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 17</td>
<td>n = 15</td>
</tr>
</tbody>
</table>

Immunologic and Prognostic Factors Associated with Overall Survival Employing a Poxviral-based PSA Vaccine in Metastatic Castrate-resistant Prostate Cancer

T-REG (CD4⁺CD25⁺CD127⁻FoxP3⁺) FUNCTION CORRELATES WITH OVERALL SURVIVAL

Treg Frequency

Shorter Survivors

Longer Survivors

% CD4⁺CD25⁺CD127⁻FoxP3⁺ in CD4⁺

PRE POST PRE POST PRE POST

p = 0.1

p = 0.745

p = 0.107

Treg Function

Increased Suppression in 75% pts

Decreased Suppression in 80% pts

% suppression

PRE POST

PRE POST

PRE POST
POSSIBLE ROLE OF CTLA-4 EXPRESSION ON T-REGS

Zheng Y, Manzotti CN, Burke F, Dussably L, Qureshi O, Walker LS, Sansom DM.

Acquisition of suppressive function by activated human CD4+ CD25- T cells is associated with the expression of CTLA-4 not FoxP3.

CTLA-4 control over Foxp3+ regulatory T cell function.

Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor.

CD4⁺ CD25⁽⁺⁺⁾ FoxP3⁽⁺⁾ CD45RA⁻ (CTLA-4⁽⁺⁾ DR⁽⁺⁾) activated Tregs (aTregs) Suppressive +++
CORRELATION BETWEEN CTLA-4 EXPRESSION ON T-REGS AND T-REG SUPPRESSIVE FUNCTION

INCREASED SUPPRESSION

DECREASED SUPPRESSION

87.5%

67%
CORRELATION BETWEEN CTLA-4 EXPRESSION ON T-REGS AND PATIENT SURVIVAL

SHORTER SURVIVORS

LONGER SURVIVORS

% CTLA-4+ Tregs
(CD4+CD25+CD127-FoxP3+)

PRE
POST

*p = 0.019

% CTLA-4+ Tregs
(CD4+CD25+CD127-FoxP3+)

PRE
POST

p = 0.127
CORRELATION BETWEEN PATIENT SURVIVAL AND
EFFECCTOR/CTLA4⁺ EXPRESSING T-REG RATIO

\[*p = 0.0006 \]

Ratio Effectors (CD4⁺CD25⁺)/CTLA4⁺ Tregs
(Fold Increase Post vs Pre)

Shorter Survivors
Longer Survivors
NO DIFFERENCE IN THE % OF EFFECTOR CELLS IN SHORTER AND LONGER SURVIVORS
CONCLUSIONS

1. No difference in Treg numbers pre- and post-vaccination

2. Significant correlations between:
 - Treg suppressive function and overall survival
 - Frequency of CTLA-4 expressing Tregs and Treg suppressive function
 - Patient survival and the ratio between effectors and CTLA4 expressing Tregs

These data suggest that the clinical benefit of vaccine immunotherapy with PSA-TRICOM can be due in part to a decreased Treg suppressive activity post vaccination

Further studies are ongoing to confirm and extend this observation
ACKNOWLEDGEMENTS

Laboratory of Tumor Immunology and Biology, NCI

Tsang Kwong, PhD
Macy Huen, PhD
Caroline Jochems, MD, PhD
Diane J Poole
Chiara Intrivici, MD
Ravi Madan, MD
Philip Arlen, MD, PhD
James Gulley, MD, PhD
Jeffrey Schlom, Chief