Targeting Tumor Antigens by Redirecting T cells using Bispecific Antibodies

Lawrence G. Lum, MD, DSc

Professor of Medicine
Director of Translational Research
Director of Immunotherapy
Director of Stem Cell Laboratory

Roger Williams Hospital
Providence, RI
Boston University School of Medicine
Boston, MA
Clinical Problem

- Patients with metastatic breast cancer, hormone refractory prostate cancer, and other cancers have limited clinical options.

- Chemotherapy, irradiation, or high dose chemotherapy have become dose-limiting.

- New non-toxic strategies are needed to provide an anti-tumor effect without enhancing treatment toxicities.
Perspective

Earlier Talks
- **Humoral Immunity** and Antibodies – Paul Sondel
- **Monoclonal Antibodies** in Cancer Therapy – Ralph Schwall

Later Talks
- **Cytokines** for Cancer Therapy – Jan Dutcher
- **Cellular** Therapies – Robert Dillman
- Critical Factors that Limit Success – Soldano Ferrone
Activated T Cells (ATC)

Signal 1
Binding of OKT3
Activates the T cells

Signal 2
IL-2 or Anti-CD28
Keeps T cells alive

Grow and Divide

Produce Cytokines/Chemokines

Directly Kill Tumor Cells
A Balancing Act for Anti-tumor Effects

TH0

TH1

Anti-tumor effects

IL-1
IL-2
TNFα
IFNγ

TH2

Suppressive effects

IL-4
IL-5
IL-10
IL-13
Definitions

ATC: Activated T cells produced by anti-CD3 activation and culture in low dose IL-2 for 6-14 days.

BiAb: Consists of two mAbs produced by chemical, genetic, or hybridoma technology with 2 specificities (could be single chain fragment variable regions, scFVs).

Armed ATC: ATC with a BiAb that binds to CD3 on T cells and to a TAA on the tumor (artificial TCR).
Combination of Cellular and Humoral Therapeutic Strategy

- The specificity of monoclonal antibodies

\textbf{AND}

- Non MHC restricted cytotoxicity mediated by T cells, NK cells, or other effector cells
Preclinical Studies Using BiAbs

<table>
<thead>
<tr>
<th>mAb</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Tenascin</td>
<td>Glioma</td>
</tr>
<tr>
<td>Anti-Glioma</td>
<td>Human Glioma</td>
</tr>
<tr>
<td>Anti-CD13</td>
<td>AML</td>
</tr>
<tr>
<td>Anti-MUC1</td>
<td>Bile Duct CA</td>
</tr>
<tr>
<td>Anti-EpCAM</td>
<td>Epithelial Cell Adhesion on AdenoCA</td>
</tr>
<tr>
<td>OC/TR</td>
<td>Folate Receptor on ovarian CA</td>
</tr>
<tr>
<td>Anti-kDal K29</td>
<td>Renal cell carcinoma</td>
</tr>
<tr>
<td>Anti-G250</td>
<td>Renal cell carcinoma</td>
</tr>
<tr>
<td>OKT9</td>
<td>Anti-transferrin receptor</td>
</tr>
<tr>
<td>Anti-AMOC-31</td>
<td>40 kDa membrane glycoprotein on carcinomas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mAb</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-idiotype</td>
<td>BCL1 lymphoma</td>
</tr>
<tr>
<td>Anti-CD19</td>
<td>Leukemic B cells</td>
</tr>
<tr>
<td>Anti-tumor (Fab)2</td>
<td>Retargeting TIL</td>
</tr>
<tr>
<td>Anti-CEA</td>
<td>Carcinoembryonic antigen</td>
</tr>
<tr>
<td>Anti-Her2</td>
<td>Her2 on RCC, colon, breast</td>
</tr>
<tr>
<td>Anti-CD20</td>
<td>NHL</td>
</tr>
<tr>
<td>Anti-PSA</td>
<td>Prostate specific antigen</td>
</tr>
<tr>
<td>Anti-CA19-9</td>
<td>Carcinomas</td>
</tr>
<tr>
<td>Anti-HLA-DR beta chains</td>
<td>B cells</td>
</tr>
<tr>
<td>Anti-EGFR</td>
<td>Glioma, neuroblastoma, colon, pancreatic, lung</td>
</tr>
</tbody>
</table>
BiAb Trials

- **SHR-1**: Anti-CD3 x **anti-CD19** quadroma for NHL; 10 mcg - 5 mg. No adverse effects except thrombocytopenia.

- **BIS-1**: anti-CD3 x **anti-EGP-2** for epithelial carcinoma-associated transmembrane glycoprotein; MTD of 5 mcg/kg; induced high levels of TNF and IFN; dyspnea, vasoconstriction and fever without anti-tumor effect.

- **2B1**: anti-CD16 x **anti-HER2** quadroma for Her2+ tumors; DLT were fever, chills, N/V, and leucopenia; HAMA in 14 of 15; MTD was 2.5 mg/m².
BiAb Trials

- **HRS-3/A9**: anti-FCRIII x **anti-CD20** for HD of B cell malignancy; MTD not reached at 64 mg/m²/dose

- **MDX-H210**: anti-CD64 x **anti-Her2** for breast, ovarian, prostate CA; doses ranged from 1-40 mg/m² without DLT

- **MDX-447**: anti-CD64 x **anti-EGFR** for renal and head and neck cancer; Hypotension DLT, doses up to 40 mg/m²

- **H22x Ki-4**: anti-CD64 x **anti-CD30** for Hodgkin's Disease, doses up to 20 mg/m²

- **Common thread**: deletion of Fc portions improved toxicity profiles
Trials Using BiAb Armed T cells

- Nitta, 1990, anti-CD3 x anti-glioma armed lymphocytes; 4 of 10 pts had tumor regression.

- Lamers, 1992, ATC armed with anti-CD3 x anti-Mov28 were used to treat ovarian Ca.

- Canevari, 1995, ATC with anti-CD3 x anti-folate receptor given intraperitoneal with IL-2 resulted in tumor regression in advanced ovarian; 7 of 26 (4 CRs, 3 PRs).

- These early studies provided the impetus to develop engineered T-bodies and molecular engineering of BiAbs for targeting TAA.
Begin with the “End” In Mind

STRATEGY: Make T Cells better killers by redirecting or focusing their non-MHC restricted cytotoxicity on TAAs

MEANS: Arm T cells with BiAbs directed at TAAs

GOALS:
1. Improve tumor lysis
2. Immunize the patient by inducing specific CTL and humoral anti-tumor responses.
3. Induce remissions with persistent anti-tumor immunity.
Phase I/II Studies of Ex vivo Expanded T cells

1. Phase I up to 40 billion ATC given on days 1, 4, 7, and 11 for a total of 160 billion ATC after Cytoxan/TBI and PBSCT for hematologic malignancies without adverse effects.

2. Phase I up to 80 billion anti-CD3/anti-CD28 coactivated T cells given in 8 doses to patients with solid tumors with IL-2. Safe with no dose limiting toxicities (J Immunotherapy 5:408, 2001) as well as with low dose Cytoxan.

3. Phase II 210 –310 billion ATC. 10 billion ATC given 3 times/wk for 3 weeks and then 20 billion/week for 6 weeks after PBSCT for stage IV breast cancer. 70% OS and 50% PFS at 32 months without regimen or cell-based adverse effects. (Autologous Blood and Marrow Transplant 10th Proc, pp95, 2001).
Development of Bispecific Antibodies

- Produced by chemical heteroconjugation of existing mAbs, recombinant DNA technology, or a combination thereof.

- A variety of design formats allow for: 1) different sizes to allow tissue penetration; 2) enhanced specificity; 3) increased affinity to effector cells.

- Applications: targeting effector cells, targeting toxins, drugs, prodrugs, enzymes, DNA, anti-vascular agents, gene therapy vectors, radionuclides, and others (use your imagination)
BiAb Production by Chemical Heterconjugation

Anti-CD3

Traut’s reagent

Sulpho - SMCC

Anti-TAA

1

2

3

Anti-CD3 x Anti-TAA
Targeted Killing by T cells with BiAbs

\[
\text{Anti-CD3} + \text{Anti-TAA} = \text{Anti-CD3 x Anti-TAA}
\]

Armed T Cell

T Cell

Tumor Lysis
Production of Armed T cells

PBMC from Pheresis

OKT3 (20 ng/ml) + 100 IU/ml of IL-2

ATC are split every other day

Harvest, Arm with BiAb and Cryopreserve after 10-14d

Quality Control (Bacteria, fungal, and Mycoplasma stain) 7 days

Testing for cytotoxicity and cytokine production
Characteristics of Armed ATC

1. Exhibit non-MHC restricted cytotoxicity ("promiscuous killers").

2. Secrete IL-2, IFNγ, TNFα, GM-CSF, MIP-1, and RANTES after antibody receptor binding.

3. >95% CD3+ cells, 60-80% CD8 cells, 20-40% CD4 cells, and <5% CD56+ cells.

4. Patient CD3 cells expand up to 30 fold in 14 days.
Preclinical Questions

- How long will the BiAb remain on ATC?
- How long will armed ATC kill?
- Will binding to tumor trigger cytokine secretion?
- How many times will armed ATC kill?
- How long can armed ATC be detected in patients?
Targeting and Killing

Unarmed

Armed
Killing of MCF-7 Cells by Armed T Cells

% Specific Killing vs. E:T ratio for different Ab concentrations:
- No Ab
- 0.5 ng Her2Bi
- 5 ng Her2Bi
- 50 ng HerBi
Cytokine Production by Armed T Cells Exposed to SK-BR3

Normal

Patient

No Ab
OKT3
OKT3xRIT
Her2Bi 50 ng
Her2Bi 100 ng

IFN
IFN+T
TNF
TNF+T
GM-CSF
GM-CSF+T

PG/10^6 ATC/24 hrs

pg/10^6 ATC/24 hrs

0
500
1000
1500
2000
2500
3000
3500

0
500
1000
1500
2000
2500
3000
3500

0
500
1000
1500
2000
2500
3000
3500

Cytotoxicity Directed at Prostate Cancer Lines

PC-3

- % Specific Cytotoxicity
- E/T: 0 5 10 15 20 25
- ATC
- Her2Bi 50 ng

DU-145

- % Specific Cytotoxicity
- E/T: 0 5 10 15 20 25
- ATC
- Her2Bi 50 ng
IFNγ Secretion upon Repeated SK-BR-3 Restimulation

-48 0 48 96 144 192 240 288 336 384

pg IFNγ/10⁶ cells

Hours

Unarmed ATC
Armed ATC
Prevention of Prostate Cancer

COINJECTION OF PC-3 PROSTATE CANCER CELLS + ACTIVATED T CELLS
KAPLAN-MEIER PLOTS

PROPORTION REMAINING ALIVE

DAYS AFTER COINJECTION

0 10 20 30 40 50 60 70 80 90 100 110

PC-3 alone [control]
PC-3 + unarmed ATC
PC-3 + 10^7 armed ATC
PC-3 + 2x10^7 armed ATC

P = 0.00005

7/7 6/12 3/13 0/12
PC-3 tumor cells (10^7) were implanted SC in flanks of SCID-Beige mice. 7 days later when tumors were ~0.05 cc, treatments were started once/week x 4 weeks and tumor growth monitored. Results are from 2 experiments (n=10 mice/group).
Trafficking of Her2Bi Armed ATC in Beige/SCID

A RPMI/ IL-2 IV; C) IL-2 + armed ATC (2 x 10^8 cells) IV; D) IL-2 + armed-ATC (4 x 10^7 cells) IV; or E) IL-2 (3000 IU) + armed ATC (2 x 10^8 cells) IT. Tumors were excised 18 hr after treatment, formalin fixed, paraffin embedded, sectioned, and stained for human CD3+ cells.
Immunotherapy Approaches

<table>
<thead>
<tr>
<th>Cells</th>
<th>CMV CTL to Prevent Infection</th>
<th>EBV for LPD</th>
<th>MM Specific CTL after Chemo</th>
<th>DLI after Allo-BMT</th>
<th>ATC after HDC+PBSCT for BrCa</th>
<th>Armed ATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specific</td>
<td>Specific</td>
<td>Specific</td>
<td>Polyclonal</td>
<td>Polyclonal</td>
<td>Specific</td>
</tr>
<tr>
<td>Dose</td>
<td>10^6/kg</td>
<td>$\sim 5 \times 10^9$/kg</td>
<td>10^9/kg</td>
<td>10^8/kg</td>
<td>3×10^9/kg</td>
<td>4×10^9/kg (0.5x 10^9/kg)</td>
</tr>
<tr>
<td>Effect</td>
<td>Prevents CMV Pneumonia</td>
<td>Treatment of LPD</td>
<td>Induce CR in MM</td>
<td>Induce CRs in CML>A ML>ALL</td>
<td>Improve PFS?</td>
<td>Decrease Bone Pain, PSA, CA 27-29</td>
</tr>
<tr>
<td>Target</td>
<td>Viral</td>
<td>EBV LPD</td>
<td>Solid tumor</td>
<td>Liquid tumors</td>
<td>Solid tumor</td>
<td>Solid tumors</td>
</tr>
</tbody>
</table>

- CMV: Cytomegalovirus
- LPD: Lymphoproliferative Disease
- MM: Multiple Myeloma
- DLI: Donor Lymphocyte Infusion
- ATC: Adoptive Transfer Cell Therapy
- BrCa: Breast Cancer
- Allo-BMT: Allogeneic Bone Marrow Transplant
- HDC+PBSCT: High-Dose Chemotherapy and Peripheral Blood Stem Cell Transplant

Effect:
- Prevents CMV Pneumonia
- Treatment of LPD
- Induce CR in MM
- Induce CRs in CML>A ML>ALL
- Improve PFS?
- Decrease Bone Pain, PSA, CA 27-29

Dose:
- 10^6/kg
- $\sim 5 \times 10^9$/kg
- 10^9/kg
- 10^8/kg
- 3×10^9/kg
- 4×10^9/kg (0.5x 10^9/kg)
Protocols: FDA and IRB Approved

Breast Cancer
- RWH #356-46: TAC + Armed ATC for Stage II-III BrCa
- RWH #351-46: Armed ATC for Stage IV BrCa (NCI-R01 funded)

Hormone Refractory Prostate Cancer
- RWH #355-46: Armed ATC for HRPC

Eligibility:
- Metastatic, measurable, or evaluable sites
- Phase I: Her2/neu positive or negative
- Phase II: Her2/neu positive
- No active cardiac disease, ECOG PS 0-2, life expectancy >3 months

Lymphoma
- RWH #394-46: Armed ATC targeting CD20 lymphomas after PBSCT
 FDA approved 11/02/04 and (Leukemia & Lymphoma Society funded)
Treatment Schema for Breast and Prostate

GM-CSF 250 ug/m²/dose

Wk1 Wk2 Wk3 Wk4 Wk8

ATC Expansion
ATC Infusions

Screening
Leukopheresis

Tumor Evaluation
Immune Evaluation

3 Wks

IL-2 300,000 IU/m²/day
Detection of Armed ATC in Blood

Days after Initiation

% Cells

0 5 10 15 20 25 30

0 10 20 30 40 50 60 70

IgG2a Pre
IgG2a Post
T cells Pre
T cells post

Detection of Armed ATC in Blood
Pre and Post EliSpots

IFN-γ EliSpots with PBMC isolated from a patient before and after the 4th infusion of Her2Bi-armed ATC (5 x 10⁹). Her2/neu-specific IFN-γ secretion by T cells was measured by exposing 10⁵ PBMC to SK-BR-3 cells at an E:T of 10 for 2 h at 37°C and then the PBMC to an EliSpot plate coated with anti-IFN-γ.
EliSpots from Stage IV BrCa Pt

![Graph showing IFNγ EliSpots/10^6 Cell plated over time with unstimulated and stimulated conditions.](image)

- **Pre Treament**
- **Pre Inf 5**
- **1 hr Post Inf 5**

- **Y-axis:** IFNγ EliSpots/10^6 Cell plated
- **X-axis:** Time points (Pre Treatment, Pre Inf 5, 1 hr Post Inf 5)

Legend:
- Red: unstimulated
- Orange: stimulated
Overall Survival in Phase I Trials with Her2Bi-armed ATC

- Stage II/III BrCa \((n = 6) \)
- Stage IV BrCa \((n = 8) \)
- HRPC \((n = 7) \)

Percent Surviving vs. Months
RWH# 04-394-46 Infusion of ATC Armed With CD20Bi for CD20+ NHL

Leukopheresis → ATC Expansion → Cryopreservation → PBSCT

CTC Preparative Regimen

G-CSF Priming 14 days

Wk1 Wk2 Wk3 Wk4 Wk5 Wk6 Wk7 Wk8 Wk9

IL-2 (300,000 IU/m2/day)

Dose Level 1: 5 billion/infusion Total 75 billion
Dose Level 2: 10 billion/infusion Total 150 billion
Dose Level 3: 15 billion/infusion Total 225 billion
Dose Level 4: 20 billion/infusion Total 300 billion
Armed ATC

- Grow and divide after engaging and killing the tumor
- Secrete chemokines and cytokines multiple times
- Bind and kill tumors cells multiple times
- Survive in vivo > 3 weeks
- Develop into Ag-specific CTL over 2 weeks in culture
- Patients infused with armed ATC develop levels of cytokines during their infusion
- PBMC from patients develop cytotoxicity that persists up to a month after the last infusion
1. Armed ATC kill multiple times.

2. Armed ATC proliferate after engaging tumor and do not undergo apoptosis via Fas/FasL or ACID.

3. Large numbers (320+ billion) of armed ATC can be produced in 2 weeks whereas cloned CTL are time consuming requiring a customized effort.
4. Armed ATC may develop into Ag-specific CTL directed at other TAA AND induce endogenous T cells to become cytotoxic.

5. “Multiple infusional vaccinations” may immunize patients to their autologous tumor.

6. Significant amounts of cytokines are found in patient serum during and after infusions with a Th1 profile.

7. There is a strong suggestion that overall survival for metastatic breast and HRPC patients is improved even with small numbers of patients.
OKT3 + Anti-Her2/neu

Breast
Prostate

OKT3 + Anti-CD20

Lymphoma
ALL?
CLL?

OKT3 + Anti-EGFR

Colon
Pancreatic
Lung
Glioblastoma
Neuroblastoma

Eight infusions of armed ATC
PBSCT + Armed ATC
Concepts/Principles

- Bispecific antibodies can be used to target effector cells to tumors.

- The non-MHC restricted cytotoxicity can be redirected with BiAbs.

- The targeted cell therapy can be used in combination with cytokine, chemotherapy, or stem cell transplant strategies that make immune space and reduce tumor burdens.

- The platform allows flexibility for targeting different TAAs by switching BiAbs.
Immunotherapy Team (A Rhode Island Consortium)

Ritesh Rathore, MD – Clinical Director
Pam Davol, MEd, Senior Research Associate
Wendy Young, RN, OCN – IT Clinical Coordinator
Delia Devito – Administrative Assistant

Technical
Ryan Grabert
Yoni Gall
Tom Tarro
Estie Palushock
James Davis
Jen Jarvis

Coinvestigators/Contributors:
Frank Cummings, MD
Tony Testa, MD
Nick Koutab, PhD
Kathy Radie-Keane, MD
Steven Schiff, MD
Peter Quesenberry, MD
Ray Chaquette, MD
Gerald Colvin, DO
Augusto Zabbo, MD
Cheru Taneja, MD
Steven Cohen, MD
Bob Legare, MD
Tony Mega, MD
Abby Maizel, MD
John Pryzgoda, MD
Mehrdad Abedi, MD

Facilities:
1. Specialized ultra-clean rooms that are FDA approved for producing T cells and bispecific antibodies for clinical trials.
2. Seamless clinical coordination between institutions/practices
3. Immunotherapy clinic that is staffed with experienced nurses.