Strategies to Enhance Dendritic Cell-Mediated Antitumor Immunity

Johannes Vieweg, M.D.
Associate Professor of Urology/Immunology
Duke University Medical Center
Objective

Therapeutic Immunity

Vaccine Potency = **Magnitude** x **Quality** x **Persistence**

Threshold of ‘Therapeutic’ Immunity

Vaccine Development

Vaccine with therapeutic impact

Vaccine with no or minimal therapeutic impact

Patient Factors

i.e.

- Tumor burden,
- Immune suppression
- Pretreatment,
- Age,
- Disease setting,
- Other factors
A Multi-Pronged Approach to Cancer Immunotherapy

Type
- CD4 immunity (LAMP, Ii inhibition)

Frequency
- DC vaccination
- In situ maturation

Antigen
- Defined “universal” antigens
- Mixtures (ampl. mRNA)

Induction of immunity
- Tregs (ONTAK®)
- ImC (ATRA)
- B7H-1, TGFβRII, DcR3 aptamers

Enhance survival
- Costimulation: OX40, 4-1BB CD27, CD40 (mRNA/DC)

Prevent attenuation
- CTLA-4, PD-1 aptamers

Persistence of immunity
- Stromal antigens
- CD4+ T cell effectors

Immune suppression

Immune evasion
Activation of T–Cells by APC

From: Abbas et al. Cancer Immunology
Dendritic cell-based vaccines using tumor antigen in the form of mRNA

- Powerful method for stimulating antitumor immunity
- Broadly applicable to all cancer types
- Solution to the problem of treatment-related emergence of resistant variants
Background: Phase I Clinical Trial using semi-mature PSA RNA transfected DC

A. Phenotype after RNA Loading

![Graph showing PSA-mRNA Titration](image)

B. Evidence of Immunogenicity

![Bar graph showing spots per 5x10^5 PBMC](image)
Background: Phase I Clinical Trial using semi-mature PSA RNA transfected DC

C. Impact on PSA Velocity

D. Clearance of Circulating Tumor Cells

D. Entire Group

Patient ID Pre Post
#2 #3 #5 #7 #9 #13 #16

PSA Log Slope

0 0.05 0.10 0.15 0.20

0 4 8 12

PSA Log Slope

0 1 1.5 2 2.5

0 4 8 12

PSA mRNA Copies/10^7 PBMC

0 1.5 3 4

0 4 8 12

EpCAM mRNA Copies/10^7 PBMC

0 100 200 300 400

0 50
Increase of Tumor-Specific T Cells after Vaccination with semi-mature RCC RNA transfected DC

Patient ID

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#5</th>
<th>#7</th>
<th>#10</th>
<th>#14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
</tbody>
</table>

G250

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#5</th>
<th>#7</th>
<th>#10</th>
<th>#14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
</tbody>
</table>
Survival of Subjects immunized with Renal Tumor RNA Loaded DC

Gleave et al. N=188
Mature, but not Immature TERT RNA Loaded DC Elicit A Local Inflammatory Response at the Injection Site
Mature, but not Immature Dendritic Cells are Capable of Migrating to Draining Lymph Nodes
Telomerase (hTERT)
A Broadly Expressed Candidate Tumor Antigen

- hTERT can be processed for **class I presentation** in a broad range of human tumors.
- Telomerase is an attractive candidate for a **broadly expressed tumor rejection antigen**
 - Silent in most somatic tissues
 - Reactivated and over-expressed in the majority of human solid tumors
- Reduced risk of **antigen-escape** tumor cell variants.
Targeting mRNA-encoded antigens into the endosomal/lysosomal compartment

A. pGEM4Z/hTERT/A64

T7 promoter hTERT aa1-1132 PolyA

B. pGEM4Z/hTERT- LAMP/A64

T7 promoter hTERT aa168-1132 PolyA

gp96 hLAMP
aa1-27 aa 382-416

Leader sequence

TERT mRNA-Transfected DC

Clinical Trial Design

Dose Schedule A: 3 cycles of 1×10^7 cells i.d. per cycle

Dose Schedule B: 6 cycles of 1×10^7 cells i.d. per cycle

- Determine Eligibility
- Metastatic Prostate Cancer
- Informed Consent
- Leukapheresis
- RANDOMIZE
- TERT RNA loaded DC
- LAMP TERT RNA loaded DC
- Leukapheresis
- Follow-up

Week 0
Week 2
Week 4
Week 6
Week 8

Pre-Treatment Phase
Treatment Phase
Follow-up
Patient Characteristics

Table 1. Characteristics of subjects enrolled

<table>
<thead>
<tr>
<th>Subject ID No.</th>
<th>Age</th>
<th>Karnofsky Index</th>
<th>Diagnosis of Metastases - Treatment (Months)</th>
<th>Stage (Jewett)</th>
<th>Prior Therapy</th>
<th>Pretreatment PSA (ng/dl)</th>
<th>Metastases (Study Entry)</th>
<th>Assigned Dose Level (Total Dose)</th>
<th>Cell Product (mRNA-Transfected DC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTH-01-LMP</td>
<td>68</td>
<td>100</td>
<td>148</td>
<td>D2</td>
<td>RP/XRT₁/H</td>
<td>4.5</td>
<td>BN</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>RFB-02-TRT</td>
<td>75</td>
<td>90</td>
<td>14</td>
<td>D2</td>
<td>XRT²/H</td>
<td>1.6</td>
<td>BN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>DEM-03-LMP</td>
<td>70</td>
<td>100</td>
<td>56</td>
<td>D3</td>
<td>RP/H</td>
<td>54.3</td>
<td>LN/BN</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>RNR-04-TRT</td>
<td>65</td>
<td>90</td>
<td>36</td>
<td>D3</td>
<td>RP/XRT₁/O</td>
<td>10.7</td>
<td>LN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>BRH-05-TRT</td>
<td>50</td>
<td>100</td>
<td>21</td>
<td>D1</td>
<td>RP</td>
<td>0.3</td>
<td>LN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>DGE-06-LMP</td>
<td>63</td>
<td>100</td>
<td>90</td>
<td>D1</td>
<td>RP/XRT₁</td>
<td>7.3</td>
<td>LN</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>GWN-08-TRT</td>
<td>58</td>
<td>100</td>
<td>71</td>
<td>D3</td>
<td>RP/XRT₁/H/C</td>
<td>111.3</td>
<td>LN/BN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>JLA-09-TRT</td>
<td>47</td>
<td>100</td>
<td>26</td>
<td>D3</td>
<td>H</td>
<td>2.9</td>
<td>LN/BN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>TJL-10-LMP</td>
<td>64</td>
<td>90</td>
<td>64</td>
<td>D3</td>
<td>XRT²/H/C</td>
<td>60.4</td>
<td>BN/ST</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>JDS-11-TRT</td>
<td>59</td>
<td>100</td>
<td>6</td>
<td>D2</td>
<td>H</td>
<td>0.4</td>
<td>BN</td>
<td>3x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>JLB-12-LMP</td>
<td>62</td>
<td>80</td>
<td>22</td>
<td>D3</td>
<td>RP/XRT₁/H/C</td>
<td>15.6</td>
<td>BN</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>HTD-13-LMP</td>
<td>59</td>
<td>90</td>
<td>74</td>
<td>D1</td>
<td>RP/XRT₁/H</td>
<td>4.3</td>
<td>LN</td>
<td>3x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>JCS-14-LMP</td>
<td>63</td>
<td>80</td>
<td>11</td>
<td>D3</td>
<td>H</td>
<td>287.7</td>
<td>BN</td>
<td>6x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>JRL-15-TRT</td>
<td>67</td>
<td>90</td>
<td>175</td>
<td>D3</td>
<td>RP/XRT₁/H/O</td>
<td>11.7</td>
<td>BN</td>
<td>6x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>TMS-16-TRT</td>
<td>59</td>
<td>100</td>
<td>96</td>
<td>D1</td>
<td>RP/XRT₁</td>
<td>0.1</td>
<td>LN</td>
<td>6x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>JOG-17-TRT</td>
<td>68</td>
<td>90</td>
<td>55</td>
<td>D1</td>
<td>RP/H/C</td>
<td>0.9</td>
<td>LN</td>
<td>6x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>AG-18-LMP</td>
<td>71</td>
<td>90</td>
<td>95</td>
<td>D3</td>
<td>H</td>
<td>38.0</td>
<td>BN</td>
<td>6x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>FSH-19-LMP</td>
<td>52</td>
<td>100</td>
<td>58</td>
<td>D2</td>
<td>XRT¹/H</td>
<td>0.4</td>
<td>LN/BN</td>
<td>6x10⁷</td>
<td>LAMP hTERT</td>
</tr>
<tr>
<td>PEZ-20-TRT</td>
<td>72</td>
<td>100</td>
<td>6</td>
<td>D3</td>
<td>RP/H</td>
<td>21.7</td>
<td>BN</td>
<td>6x10⁷</td>
<td>hTERT</td>
</tr>
<tr>
<td>CAH-21-TRT</td>
<td>57</td>
<td>90</td>
<td>9</td>
<td>D2</td>
<td>XRT²/XRT²O</td>
<td>0.3</td>
<td>BN</td>
<td>6x10⁷</td>
<td>hTERT</td>
</tr>
</tbody>
</table>

Pre-treatment: XRT¹, primary irradiation; XRT², local (palliative) irradiation for painful bony metastases; RP, radical prostatectomy; H, medical hormonal ablative therapy; C, chemotherapy; O, orchietomy. Metastases: LN, lymphadenopathy; BN, bony metastases; ST, soft tissue metastases.
A. DTH Diameter (mm) vs. Vaccine Cycle Number

B. Images of hTERT and LAMP-hTERT

C. Bar graphs of cytokine levels (IL-2, TNF-α, IFN-γ, IL-10, IL-4, IL-5)

D. Graphs showing specific lysis for DC+hTERT and DC+GFP / K562
Stimulation of hTERT-specific T-cell responses After Vaccination with TERT RNA transfected DC
Kinetics of the Antigen-Specific CD8$^+$ T-cell Response

Longitudinal Evolution of CD8$^+$ and CD4$^+$ T cell Responses

TMS-16-TRT

JRL-15-TRT

AJG-18-LMP

FSH-19-LMP

Study Week

<table>
<thead>
<tr>
<th>Study Week</th>
<th>Pre</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS-16-TRT</td>
<td>CD8</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td>JRL-15-TRT</td>
<td>CD8</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td>AJG-18-LMP</td>
<td>CD8</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td>FSH-19-LMP</td>
<td>CD8</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td>CD4</td>
<td>300</td>
<td>600</td>
<td>900</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
</tr>
</tbody>
</table>
Characterization of Vaccine-induced CD8$^+$ T cells

CD8$^+$ hTERT

- IL-2
- IFN-γ
- TNF-α

CD8$^+$ LAMP hTERT

- IL-2
- IFN-γ
- TNF-α
Impact on PSA Doubling Time and Circulating Tumor Cells

A. Three Weekly Doses (n=7)

- PSA Doubling Time (months)
 - PRE: 4.6
 - POST: 3.8

B. DGE-06-LMP

- PSA mRNA
 - Study Period (weeks): -4, 0, 2, 4, 6, 26

Six Weekly Doses (n=5)

- PSA Doubling Time (months)
 - PRE: 2.9
 - POST: 100.0

B. BRH-05-TRT

- PSA mRNA
 - Study Period (weeks): -4, 0, 2, 4, 6, 26
Conclusions

• Powerful method of stimulating hTERT-specific CD4$^+$ and CD8$^+$ T cell responses in cancer patients.

• Evidence that LAMP-hTERT RNA transfected DC are capable of stimulating higher frequencies of hTERT – specific CD4$^+$ T cells
 — DTH reactions/ELISPOT/cytolytic assays
 — Induction of central T cell memory

• Lack of tolerance with increasing numbers of vaccinations.

• Impact on PSA doubling time and clearance of circulating tumor cells.
Elimination of Regulatory T cells

Rationale

- Some studies suggest increased levels of Treg in cancer patients.
- Antibody-mediated elimination of Treg has shown to elicit antitumor immunity in tumor-bearing mice.
- Anti-CD25 mAB therapy was capable of enhancing the therapeutic effects of tumor vaccines.
Elimination of Regulatory T cells

Approach

DAB$_{389}$IL-2 is a recombinant fusion protein that contains the catalytic- and membrane translocation domain of diphtheria toxin fused to human IL-2, allowing targeting of CD25$^+$ cells.
Human CD4^+CD25^+ Regulatory T cells

Definition

A. CD4^+/CD25^+

B. CD4^+/CD25^{neg}

C. CD4^+/CD25^{int}

D. CD4^+/CD25^{high}
Enhancement of T-cell Immunity after T_{reg} Depletion

A. CD4^{+}/CD25^{high} and PBMC±CD4^{+}/CD25^{high} Viability over Time (hours)

B. Stimulatory Index of PBMC and DC with Treg

C. Specific Lysis (%) for hTERT, fluM1, MART1 RNA and pep with E:T Ratio
Monitoring for Regulatory T cells in a Vaccination Setting

CD4

CD4

CD25

PMA/Ionomycin

allogeneic MLR

97.8 1.3

88.3 9.6

93.0 4.9

0.02 1.0

1.3 1.2

0.2 3.0

7.6 4.2

Isotype

Isotype

GITR

CTLA-4
Depletion of CD4⁺/CD25^{high} Regulatory T cells After DAB₃₈₆ IL-2 Administration

Patient: HMT-04-DAB

CD4

CD25

pre

post (4d)

post (28d)

Isotype

GITR

0.4

0.0

4.6

1.6

3.4

71.9

3.6

0.8

76.5

77.8

2.4

3.4
Depletion of CD4⁺/CD25^{high} Regulatory T cells After DAB₃₈₆IL-2 Administration

Patient: JB01-RCC ONTAK 18µg/kg + RCC RNA DC (2 doses)

Pre 1st vaccination =75% depletion efficacy

Pre vaccination

Post 2nd vaccination

A. Antigen-specific Proliferation

B. INF-γ ELISPOT (CD4⁺ T Cells)

C. INF-γ ELISPOT (CD8⁺ T Cells)
Efficacy of Depleting Regulatory T cells in Metastatic Cancer Patients

Graph

![Graph showing percent CD4+ T cells](image)

Table

<table>
<thead>
<tr>
<th>Marker</th>
<th>Cell Type</th>
<th>Single Positive (% positive of PBMC)</th>
<th>CD25 Double Positive (% of Single Positive)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>CD4</td>
<td>T cells</td>
<td>28.0</td>
<td>25.0</td>
</tr>
<tr>
<td>CD8</td>
<td>Macrophages</td>
<td>17.0</td>
<td>19.0</td>
</tr>
<tr>
<td>CD14</td>
<td>Monocytes</td>
<td>13.9</td>
<td>15.4</td>
</tr>
<tr>
<td>CD19</td>
<td>B cells</td>
<td>27.3</td>
<td>24.6</td>
</tr>
<tr>
<td>CD56</td>
<td>NK cells</td>
<td>18.9</td>
<td>21.3</td>
</tr>
<tr>
<td>CD69</td>
<td>NK/effector cells</td>
<td>21.2</td>
<td>19.6</td>
</tr>
</tbody>
</table>
Elimination of T_{reg} is Capable of Enhancing Vaccine-mediated T-cell Responses

A.

B.
Elimination of Regulatory T cells

Conclusions I

• NIH and FDA-approved clinical trial.
• Demonstration of selective Treg depletion following single dose of DAB$_{389}$IL-2.
• Enhancement of T cell responses \textit{in vitro}, predominantly against ‘naturally processed’ self-antigens.
• Safety, no clinical signs of autoimmunity in 10 patients treated thus far.
Elimination of Regulatory T cells

Conclusions II

• No interference with CD4⁺/CD25^{int} memory T cell pool.
• Stimulation of high frequencies of RCC-specific T cells \textit{in vivo} after combined therapy.
• Polarization of RCC-specific CD4⁺ T cells towards Th-1, but not Th-2.
• This strategy could have broad implication for the design of active and passive immune-based protocols.