Immunotherapy combinations: From mice to man

Michael A. Curran, Ph.D. Department of Immunology

I have research collaborations with Bristol Myers Squibb, and am a consultant for Jounce and BD.

I receive royalties from the patent "Methods and Compositions for Localized Secretion of anti-CTLA-4 Antibodies".

I will be talking about investigational therapeutics.

Why does the immune system fail to eliminate cancer?

Antigenic Cancer Cells Grow Progressively in Immune Hosts without Evidence for T Cell Exhaustion or Systemic Anergy

By Maresa Wick,* Purnima Dubey,* Hartmut Koeppen,* Christopher T. Siegel,[‡] Patrick E. Fields,[§] Lieping Chen,[∥] Jeffrey A. Bluestone,[§] and Hans Schreiber*

J. Exp. Med. © The Rockefeller University Press Volume 186, Number 2, July 21, 1997 229–238

Like pathogens, tumors deploy multigenic immune evasion programs

With < 9.8 kB of genome space HIV, like many other viruses devotes a large percentage of its genome to immune evasion.

Can access the entire 3x10⁹ base genome for evolutionary as well as adaptive immune evasion.

T cells are activated in two steps: T cell receptor ligation and co-stimulation

CTLA-4, a negative regulator of T cell activity, limits the lifespan of activated T-cells

Which T-cells are affected by Ipilimumab(αCTLA-4)?

The greater the percentage of active T-cells in a patient targeting the tumor when α CTLA-4 is initiated, the greater the efficacy and selectivity should be.

Why choose to block the PD-1 and CTLA-4 pathways in combination?

Blocking one co-inhibitory receptor leads to reciprocal upregulation of the other

CTLA-4 and PD-1 inhibitory signals are non-redundant

Evidence of CTLA-4 induction and subsequent progression?

Adapted from Brahmer et. al., "Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer", N Engl J Med, 366;26, 2012.

PNAS

PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors

Michael A. Curran^a, Welby Montalvo^a, Hideo Yagita^b, and James P. Allison^{a,1}

^aHoward Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and ^bDepartment of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

Contributed by James P. Allison, January 19, 2010 (sent for review December 17, 2009)

	B7-1 🧀 🖛 CTLA-4	PD-L1 🗠 💴 PD-1	
	B7-2 주 Kana CTLA-4	PD-L2 💓 🖘 PD-1	B7-1 🥨 妕 PD-L1
Inhibits T cell proliferation	+++	++	++
Reduces cytokine production	+	+++	++
Reduces cytotoxicity	+	+++	?
Reduces APC co-stimulation	++		
Induces T cell apoptosis	-/+	++	?
Ligand expressed on tumor		++	+/-
Ligand in microenvironment	++	++	++
Supports Treg suppresion	++	++	+
Supports Teff to Treg conversion	+++	++	++

Conversion of the tumor micro-environment from suppressive to inflammatory

Risk/Benefit: αPD-1 monotherapy IrAE were less severe but largely overlapping with αCTLA-4

Phase I study: Concurrent and sequenced nivolumab and ipilimumab in melanoma

Concurrent Cohorts

Sequenced Cohorts

- Tumor assessments by mWHO and immune-related mWHO criteria
- Data as of Feb 2013 for 86 patients are reported for the ongoing study

PRESENTED AT: ASCO Annual '13 Meeting

Clinical activity: combination of nivolumab and ipilimumab therapy

	n	ORR	Patients with ≥80% Tumor Reduction at 12 Wk
Ipilimumab (3 mg/kg) ²	137	11%	<2
Nivolumab (3 mg/kg) ³	17	41%	<3
Concurrent therapy ¹ (3 mg/kg ipilimumab + 1 mg/kg nivolumab)	17	53%	41%

Wolchok et al. ASCO 2013, abs 9012, oral presentation. Hodi et al. N Engl J Med 2010;363:711-23. Topalian et al. N Engl J Med 2012;366:2443-54.

PRESENTED AT: ASCO Annual '13 Meeting

Patient 011 (MSKCC) – Dramatic Response

Pre-treatment

10 cm gastric mass

5 cm peripancreatic mass

12 weeks

3.7 cm gastric mass

3.2 cm peripancreatic mass

Using what we know from the murine studies, what potential biomarkers should we monitor?

Ipilimumab / Nivolumab Combination Monitoring Panel

<u>T-cell Gating:</u>	<u>Inhibitory:</u>	Activation:	PD-1 Monitoring:
Live/Dead	CTLA-4	lcos	αhlgG4 (detects α PD-1)
CD3, CD8	Tim-3	Ki-67	αPD-1 MIH4 (total surface)
CD4, FoxP3	LAG-3	Granzyme B	αPD-1 EH12 (total unblocked)

In the mouse, accumulation of CTLA-4 / PD-1 double positives in TIL correlates with tumor rejection

Increase in circulating CTLA-4+/PD-1+ CD4 T^{eff} following treatment

In the mouse combination co-inhibitory blockade leads to increased proliferation of TIL but offers little benefit over αCTLA-4 alone

Durable increases in CD4 T^{eff} proliferation following treatment

Wang et al. Journal of Translational Medicine 2012 10:146 doi:10.1186/1479-5876-10-146

Increased frequency of activated (ki67+) CD4 and CD8 T cells with concurrent nivolumab + ipilimumab

Annual 13 Meeting

AS(

 \mathbf{O}

LS25

LS25	Christian suggests that this slide be deleted and only the ICOS data on the next slide be presented.
	Or show CD4 data for ICOS and ki67 and at the bottom of the slide state
	"A similar effect was seen for ICOS + and ki67+ CD8 T cells"
	Leinbach, Susan, 5/14/2013

In the mouse, increased Icos expression on CD4 T-cells, especially Tregs, correlates with response to αCTLA-4/αPD-1 blockade

Increased frequency of activated (ICOS+) CD4 and CD8 T cells with concurrent nivolumab + ipilimumab

Annual 13 Meeting

AS

O

In some patients Icos upregulation correlates with clinical response

Tumor infiltrating T-cells from α 4-1BB treated mice upregulated KLRG1 on most CD8s and ~50% of CD4s

We have termed this CD4+ T-cell phenotype ThEO and the corresponding CD8 phenotype TcEO

Using what we know from the murine studies, what potential biomarkers should we monitor?

Urelumab (α4-1BB/αCD137) Patient Monitoring Panel

Population Gating:	ThEO Phenotype:	Activation:	Inhibitory:
Live/Dead, CD3	Eomes, KLRG1	lcos	CTLA-4
CD8, CD4, FoxP3	Granzyme A, B, K	Ki-67	PD-1
CD16, CD56, CD11c			

Preliminary data suggests αCD137 treatment evokes Eomes upregulation in patient PBMC

1) Is Eomes upregulation in PBMC a marker of pharmacologic response to the antibody?

2) Does Eomes (and KLRG1) upregulation on PBMC correlate with clinical response?

What is the root of 4-1BB induced liver inflammation and how is it ameliorated by α CTLA-4?

120

Research Article

Combination Therapy with Anti–CTL Antigen-4 and Anti-4-1BB Antibodies Enhances Cancer Immunity and Reduces Autoimmunity

4-1BB agonist and CTLA-4 blocking antibodies were able to mutually ameliorate each others' side affects in the mouse.

Combination of Anti-CD137 & Ipilimumab in Patients With Melanoma

This study has been withdrawn prior to enrollment.

Sponsor: Bristol-Myers Squibb

Information provided by: Bristol-Myers Squibb ClinicalTrials.gov Identifier: NCT00803374

First received: December 4, 2008 Last updated: November 18, 2011 Last verified: November 2011 History of Changes

Why this trial should happen.

- 1. Therapeutic synergy between Ipilimumab and Urelumab (α CD137) in multiple tumor models
- 2. Mutual amelioration of each agents IrAE by the other
- 3. Potential to expand the pool of patients eligible to receive and remain on Ipilimumab

Seeking combinations outside of immunotherapy

Acknowledgements

<u>Curran Lab:</u>

Michael A. Curran

Midan Ai

Todd Bartkowiak

Ashvin Jaiswal

Beata Lerman

Krishna Shah

<u>Special Thanks:</u> James P. Allison Maggie Callahan Jedd Wolchok <u>MSKCC IMF:</u> Jedd Wolchok Jianda Yuan Matthew Adamow

<u>Wolchok Lab:</u> David A. Schaer Bristol-Myers Squibb: Maria Jure-Kunkel Stacie Goldberg John Kurland Christine E. Horak

<u>Murine Study</u> <u>Collaborators:</u> Joseph C. Sun (LCMV) -MSKCC

Aymen Al-Shamkhani (α4-1BB) -University of Southhampton

Steve Reiner (Eomesflox) - Columbia University

MD Anderson Immunotherapy Platform

James P. Allison Ph.D, Padmanee Sharma M.D., Ph.D., Patrick Hwu M.D.

