

Adoptive T-cell Transfer

Patrick Hwu, MD Professor and Chairman Melanoma Medical Oncology

June 2013

MDAnderson Cancer Center

Making Cancer History*

Disclosures

None

Adoptive Cell Therapy (ACT) with Antigen Specific T-cells

Surgical Removal of Cancer Nodule

Clinical Response following Lymphodepletion + T-lymphocyte Infusion

Response to TIL Therapy

pre-treatment

4 weeks post-treatment

18 months post-treatment durable response noted

Clinical Response Data from MDACC TIL Clinical Trial

Best overall response:

Number of patients	CR*	PR*	Total
51	2 (4%)	21(41%)	23 (45%

*Some patients are still undergoing clinical response

Progression-free and Overall Survival

	Best Overall Response (n=51)					
	Re	irRC esponders (45%)	irRC Non-Responders (55%)			
	CR	PR	SD	PD		
Number of patients	2	21	17	11		
Progression-free survival (months)	29, 20+	37+, 37+, 36+, 33+, 31+, 30+, 29+, 27+, 22+ 22+, 22, 11+, 11, 10, 9, 9, 8, 8, 8, 3, 3	38+, 7, 6+, 6+, 6, 6, 6, 5, 4, 4, 4, 4, 3, 3, 3, 2+, 1	3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1		
Overall survival (months)	29+, 20+	38+, 37+, 37+, 36+, 33+, 31+, 30+, 29+, 27+, 27+, 25+, 23+, 22+, 22+, 15, 12+, 11+, 10+, 9+, 9+, 3+	38+, 25, 14+, 14, 11+, 10+, 8, 8, 7+, 6+, 6+, 6, 6, 6, 5, 4, 2+	21, 18, 14, 10+, 6, 5, 4+, 4, 3+, 3, 2		

Numbers of Total TIL Infused and Type of Clinical Response

Clinical Response

CD8+ TIL are Critical

Higher Proportion of CD8+ TILs Co-expressing BTLA in Responders

CD8 by IHC in Original Metastases is Associated with CD8 % in Expanded TIL and Survival

Jie Qing Chen 11

Overall Survival of Patients Receiving TILs with the Chemotherapy Preparative Regimen Alone (no TBI) or plus 2 or 12 Gy TBI.

Rosenberg SA et al. CCR 2011

Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy Cell Transfer Therapy

Treatment		n (%) of patients (duration in mo)				
	Total	PR	CR			
No TBI	43	16 (37)	5 (12)	21 (49)		
		84, 36, 29, 28, 14, 12, 11, 7, 7, 7, 7, 4, 4, 2, 2, 2	82+, 81+, 79+, 78+, 64+			
200 TBI	25	8 (32)	5 (20)	13 (52)		
		14, 9, 6, 6, 5, 4, 3, 3	68+, 64+, 60+, 57+, 54+			
1,200 TBI	25	8 (32)	10 (40)	18 (72)		
		21, 13, 7, 6, 6, 5, 3, 2	48+, 45+, 44+, 44+, 39+, 38+, 38+, 38+, 37+, 19			
Total	93	32 (34)	20 (22)	52 (56)		

Rosenberg SA et al, CCR Jul 2011

Treatment Characteristics During TIL Therapy and Clinical Outcome											
Patient	Age/sex	PS	Lactate dehydrogenase	Stage	Site of biopsy*	Evaluable metastasis	IL-2 doses	Resp.	PFS (mo)	OS (mo))
Responders ($n = 10$)											
05-LA	41/M	0	Normal	M1a	SC	SC nodules	10	CR	20†	20†	
19-NS	66/M	1	Normal	M1c	Perito.	Peritoneum	3	CR	4†	4†	
03-MG	36/M	0	Normal	M1c	LN	Soft tissue, lung, bone	15	PR	9	21†	
06-TS	60/M	0	Normal	M1b	Lung	Lung	5	PR	18†	18†	
09-SD‡	45/M	0	Normal	M1b	LN	Lung	7	PR	13†	13±	
13-BS	61/M	0	Normal	M1b	Lung	Lung	9	PR	10†	10†	
14-SV‡	71/M	0	Above	M1a	SC	SC, LN	9	PR	3	9†	
16-SH	41/M	1	Normal	M1c	SC	Liver, adrenal, lung, LN	8	PR	6†	6†	
18-WR	70/F	0	Normal	M1a	LN	SC, LN	8	PR	4	4†	
20-TY	58/M	0	Normal	M1a	SC	SC, LN	7	PR	3†	3†	
Median							8.1 ± 3.2		(7.3)	(9.3)	
Nonresponde	ers (<i>n</i> = 10)										
01-AY	56/M	0	Normal	M1c	Lung	Lung, SC, bone	9	SD	11	17	
07-ZR	22/M	0	Normal	M1b	Lung	Lung	7	SD	3	15	
08-RM	34/F	0	Normal	M1c	Liver	Liver	14	SD	5	6	
12-VS‡	41/F	0	Normal	M1a	SC	SC, LN	11	SD	11†	11†	
02-PE	36/M	0	Above	M1c	LN	LN, adrenal, periton.	9	PD	2	3	
04-BA‡	57/M	0	Normal	M1c	Lung	LN, lung, adrenal,	13	PD	3	20†	
10-BE	53/F	0	Normal	M1c	LN	SC, LN, adrenal	6	PD	1	5	
11-KB	57/M	1	Above	M1c	LN	Lung, LN	6	PD	1	5	
15-SM‡	52/M	1	Above	M1c	Liver	Bone, liver	10	PD	1	3	
17-ZD‡	68/F	1	Above	M1c	Pleura	Lung, pleura, bone	5	PD	1	2	
Median		*	Site of tumor sam	ple			9.0 ± 3.1		2.7	5.7	
		† ‡	Ongoing Patients with HLA	-A*0201.			<i>P</i> = 0.53	Besser e	t al, CCR Ma	iy 2010	14

Question?

Does PD-1 inhibition enhance T-cell therapy?

Increased Number of Transferred T-cells at the Tumor Site in Tumor-bearing Mice Receiving anti-PD-1 and ACT Treatment

Peng W...Hwu P. Cancer Res 72:5209-18, 2012 16

Delayed Tumor Progression in Tumor-bearing Mice Receiving anti-PD-1 and ACT Treatment

Question?

Does BRAF inhibition enhance T-cell therapy?

Combination of PLX4720 with Adoptive T-cell Therapy Leads to Enhanced Anti-tumor Activity (B6 nude mice)

Administration of PLX4720 Increases Tumor Infiltration of Adoptively Transferred pmel-1 T-cells in vivo

Combining BRAF(V600E) Inhibition and Immunotherapy

Jahan Khalili / Greg Lizee

Insertion of Genes into Lymphocytes to Enhance Antitumor Properties

Chimeric Antibody/T Cell Receptor: Combines Antibody V Region and T-cell Signaling Chains

Transduction of T-cells with Chimeric Receptor Genes to Direct T-cell Specificity

Brief Definitive Report

Lysis of Ovarian Cancer Cells by Human Lymphocytes Redirected with a Chimeric Gene Composed of an Antibody Variable Region and the Fc Receptor Gamma Chain.

By Patrick Hwu,^{*} G. E. Shafer,^{*} J. Treisman,^{*} G. Schindler,[‡] G. Gross,[‡] R. Cowherd,^{*} S.A. Rosenberg,^{*} and Z. Eshhar[‡] From the ^{*}Surgery Branch, National Cancer Institute, National Institutes of Health Bethesda, Maryland 20892; and the [‡]Department of Chemical Immunology, Weizmann Institute of Science, Rehovot 76100, Israel

The Journal of Experimental Medicine
Volume 178 July 1993 361-366

The Human Ovarian Carcinoma Cell Line IGROV-1

is Specifically Lysed by Mov- γ TIL

A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody / Fc- γ chain chimeric receptor gene recognizing a human ovarian cancer antigen

Gang Wang, Rajesh K. Chopra, Richard E. Royal, James C. Yang, Steven A. Rosenberg & Patrick Hwu

Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

Nature Medicine
Volume 4
Number 2 February 1998

Tumor Growth in *MOvγ*-Reconstituted Mice after T-cell Depletion

Nature Medicine ● Volume 4 ● Number 2 February 1998 28

Chimeric Antigen Receptors

Dotti G, Savoldo B, and Brenner M Human Gene Therapy 2009

Chimeric Antigen Receptor Domains

Kochenderfer JN, Rosenberg SA Nature Review | Clinical Oncology 2013 30

Summary of Published anti-CD19 CAR Clinical Trial Results

Table 1 | Summary of published anti-CD19 CAR clinical trial results

Institution	Gene-transfer vector used	Antibody*	Co-stimulatory domain in CAR	Chemotherapy administered before cell infusion	Normal B-cell depletion‡	Regression of malignancy reported?	Cytokine- release-type toxicities [§] reported?	n
Baylor College of Medicine ⁴⁸	Gamma- retrovirus	FMC63	CD28 or none	None	No	No	No	6
City of Hope ⁸¹	Plasmid electroporation	FMC63	None	Fludarabine before some T cell infusions	No	No	No	2
Memorial Sloan-Kettering Cancer Center ^{30,84}	Gamma- retrovirus	SJ25C1	CD28	None or cyclophosphamide	No	Yes	Yes	9
National Cancer Institute ^{33,44}	Gamma- retrovirus	FMC63	CD28	Cyclophosphamide and fludarabine	Yes	Yes	Yes	8
University of Pennsylvania ^{31,51}	Lentivirus	FMC63	4-1BB	Variable	Yes	Yes	Yes	3

*The antibody that CAR antigen-recognition molety was derived from. ‡Reported for >3 months. §For example, hypotension. Abbreviation: CAR, chimeric antigen receptor.

Kochenderfer JN, Rosenberg SA Nature Review | Clinical Oncology 2013 31

Summary of the 1st Patients Treated on the NCI Adult Autologous anti-CD19 CAR Trial

Table 2 Summary of the first patients treated on the NCI adult autologous anti-CD19 CAR trial ³³									
Patient*	Age (years)	Malignancy	Number of unique prior therapies	Number of CAR- expressing T cells infused per kg	Response (duration in months after T-cell infusion)				
1a‡	47	Follicular lymphoma	4	0.3×10 ⁷	PR (7)				
1b‡	48	Follicular lymphoma	5	1.3×107	PR (33)				
2	48	Follicular lymphoma	5	0.3×10 ⁷	NE				
3	61	Chronic lymphocytic leukaemia	3	1.1×107	CR (24)				
4	55	Splenic, marginal zone lymphoma	3	1.1×107	PR (12)				
5	54	Chronic lymphocytic leukaemia	4	0.3×10 ⁷	SD (6)				
6	57	Chronic lymphocytic leukaemia	7	1.7×10 ⁷	PR (7)				
7	61	Chronic lymphocytic leukaemia	4	2.8×107	CR (21+)				
8	63	Follicular lymphoma	7	3.0×10 ⁷	PR (11)§				

*All eight patients were male. *Patient 1 was treated twice. [§]Not evaluable for malignancy response beyond 11 months because the patient developed laryngeal carcinoma. Abbreviations: CAR, chimeric antigen receptor; CR, complete remission; NE, not evaluable for malignancy response because the patient died with influenza pneumonia; PR, partial remission; SD, stable disease.

Kochenderfer JN, Rosenberg SA Nature Review | Clinical Oncology 2013

Antitumor activity and long-term fate of chimeric antigen receptor-positive T-cells in patients with neuroblastoma

Chrystal U. Louis,¹⁻³ Barabara Savoldo,^{1,3} Gianpietro Dotti,^{1,4} Martin Pule,¹ Eric Yvon,¹ G. Doug Myers,¹ Claudia Rossig,¹ Heidi V. Russell,^{2,3} Oumar Diouf,^{1,3} Enli Liu,¹ Meng-Fen Wu,⁵ Adiran P. Gee,¹ Zhuhong Mei,¹ Cliona M. Rooney,^{1,3,6} Helen E. Heslop,^{1,4} and Malcolm K. Brenner,^{1,4}

¹Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, The Methodist Hospital Houston, TX; ²Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX Departments of ³Pediatrics, and ⁴Medicine, Baylor College of Medicine, Houston, TX; ⁵Biostatistics Shared Resource Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX; and ⁶Department of Pathology and Immunology, Baylor College of Medicine, Houston TX

- Anti-GD2 CAR in EBV CTLs
- 3 of 11 patients with active disease experienced CR
- Persistence of CAR CTLs beyond 6 weeks was associated with superior clinical outcome.

33

Insertion of Genes into Lymphocytes to Enhance Antitumor Properties

One of the Rate-limiting Steps in ACT is the Inefficient Migration of T-cells to Tumor

The Presence of CXCL1 in the Tumor Microenvironment

Melanoma Cells Produce CXCL1 which Serves as an Autocrine Growth Factor and Stimulates Angiogenesis

Transduction of T-cells with CXCR2 May Allow Them to Migrate to Tumor Sites

CXCR2-expressing T-cells Display Enhanced Accumulation in Tumor Site

The Expression of CXCR2 in Pmel T-cells Delays Tumor Growth and Improves the Survival of Tumor-bearing Mice

Tumor only
 OFL T
 CXCR2 T

Clinical Trial Plans

Acknowledgements

Preclinical Data

- Chengwen Liu

- Weiyi Peng
- Minying Zhang
- YanYan Lou
- Willem Overwijk
- Greg Lizee
- Jahan Khalili
- Tasuku Honjo (Kyoto)
- Mike Davies
- Scott Woodman

Laboratory Endpoints

- Chantale Bernatchez
- Laszlo Radvanyi
- Luis Vence
- IMCL

Clinical Research

- Melanoma Medical Oncologists
- Surgeons
- Pathologists
- Anna Vardeleon
- EJ Shpall
- TIL Lab
- Linda Duggan

Massachusetts General Hospital

- Keith T. Flaherty
- Jennifer A. Wargo

Surgery Branch, NIH

- Steven A. Rosenberg

Weizmann Institute of Science

Zelig Eshhar

Prometheus Roche/Genentech GSK NCI