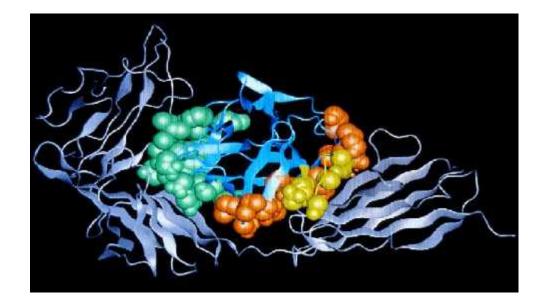
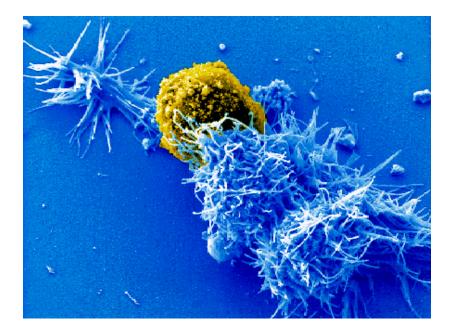
CYTOKINE THERAPY: LESSONS LEARNED


Pierre L. Triozzi, MD

Translational Hematology Oncology Research

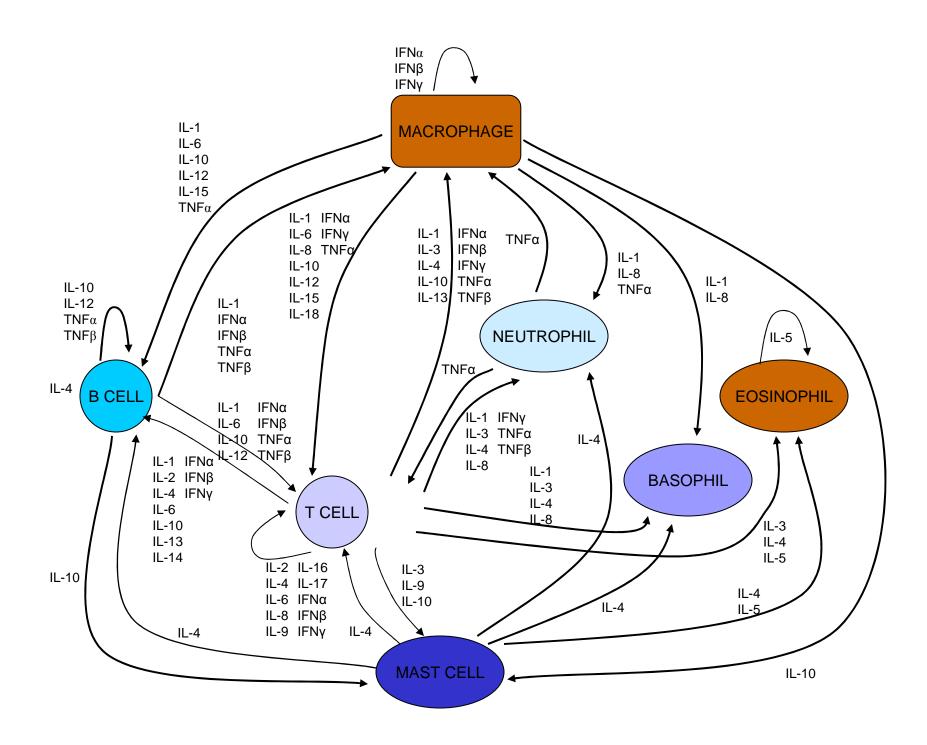

CYTOKINES

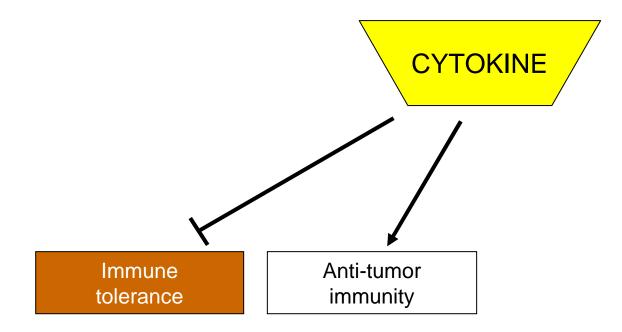
- Diverse group of soluble proteins produced by cells
- Affect either the same (autocrine) or another (paracrine) cell
- Interact with specific cell surface receptors

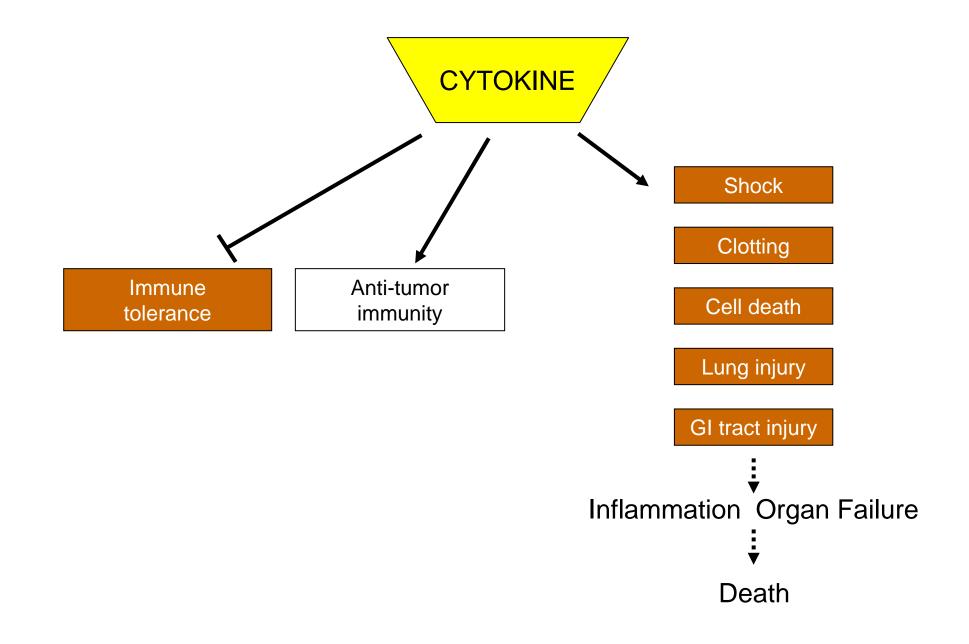
CYTOKINES

- Active at very low concentrations
- Many act as cellular survival factors
 Prevent apoptosis
- Mediate interactions between cells
- Regulate processes outside cells

CYTOKINES


- Pleiotrophy the same cytokine can act on several different cell types and can cause different responses, depending on the cell
- **Redundancy** several different cytokines acting on a cell can individually cause the same response
- **Synergy** if two (or more) cytokines are simultaneously present, the sum of the response together is greater than the sum of the individual responses
- Amplification cytokines induce the production of other cytokines
- Antagonism the presence of one cytokine inhibits the action of a different cytokine; one cytokine blocks the effect of the other


CYTOKINES vs HORMONES


 Act at a systemic level, participating in processes such as inflammation, septic shock, allergic reactions, and wound healing.

However

- Act on a wider spectrum of target cells than hormones
- Not produced by specific cells organized in specialized glands
 - Produced by cells distributed all over the body
- Sites of expression do not necessarily predict the sites of biological function.

CYTOKINE THERAPY Pharmacology

- Multiplicity of biologic effects
- Effects dependent on dose, route, and schedule
- PK of agent vs PK of biologic effects
 - Blood levels do not necessarily correlate with clinical activity
- Recombinant proteins, differ from the natural substance
 - All are immunogenic, impacts PK (toxicity/efficacy)

CYTOKINE THERAPY Pharmacology

- Multiplicity of biologic effects
- Effects dependent on dose, route, and schedule
- PK of agent *vs* PK of biologic effects
 - Blood levels do not necessarily correlate with clinical activity
- Recombinant proteins, differ from the natural substance
 - All are immunogenic, impacts PK (toxicity/efficacy)

Considerable inter-individual variability

CYTOKINES FDA Approved

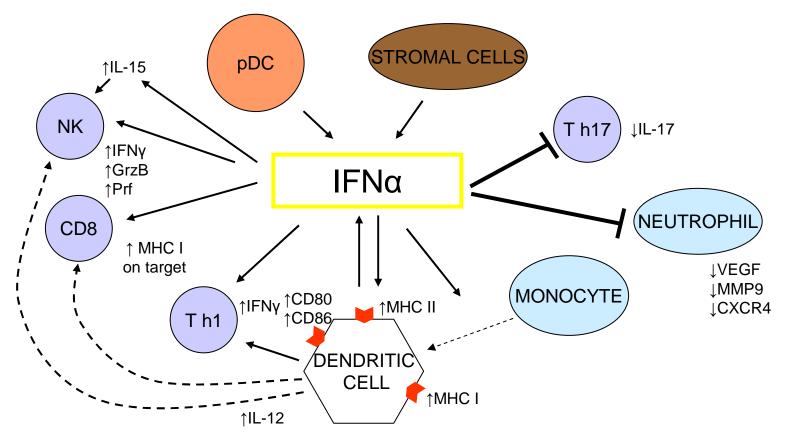
Cytokine	Indications	Year First Approved
IFN-α	Hairy-cell leukemia, CML, melanoma, Kaposi sarcoma, NHL, condyloma accuminata, hepatitis B and C	1986
G-CSF	Neutropenia, nonmyeloid malignancy	1991
GM-CSF	Bone marrow transplantation	1991
IL-2	Renal cell carcinoma, melanoma	1992
IFN-β	Multiple sclerosis	1993
IL-11	Thrombocytopenia	1997
IFN-γ	Chronic granulomatous disease, osteopetrosis	1999

CYTOKINES FDA Approved

Cytokine	Indications	Year First Approved
IFN-α	Hairy-cell leukemia, CML, melanoma, Kaposi sarcoma, NHL, condyloma accuminata, hepatitis B and C	1986
G-CSF	Neutropenia, nonmyeloid malignancy	1991
GM-CSF	Bone marrow transplantation	1991
IL-2	Renal cell carcinoma, melanoma	1992
IFN-β	Multiple sclerosis	1993
IL-11	Thrombocytopenia	1997
IFN-γ	Chronic granulomatous disease, osteopetrosis	1999

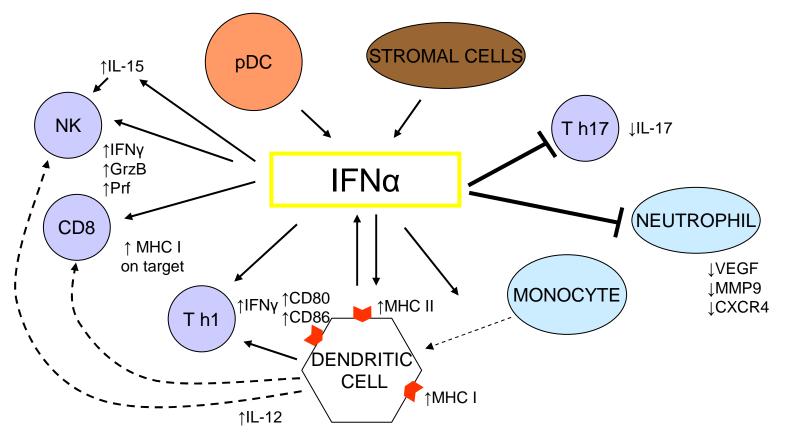
TNF-α	Sarcoma (isolated limb perfusion)	1998 (Europe)
-------	-----------------------------------	------------------

CYTOKINES FDA Approved


Cytokine	Indications	Year First Approved
IFN-α	Hairy-cell leukemia, CML, melanoma, Kaposi sarcoma, NHL, condyloma accuminata, hepatitis B and C	1986
G-CSF	Neutropenia, nonmyeloid malignancy	1991
GM-CSF	Bone marrow transplantation	1991
IL-2	Renal cell carcinoma, melanoma	1992
IFN-β	Multiple sclerosis	1993
IL-11	Thrombocytopenia	1997
IFN-γ	Chronic granulomatous disease, osteopetrosis	1999

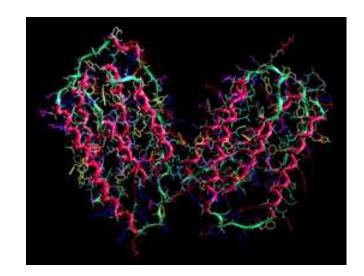
TNF-α	Sarcoma (isolated limb perfusion)	1998 (Europe)
-------	-----------------------------------	------------------

IFN-α


• Immunologic effects

IFN-α

• Immunologic effects



- Anti-proliferative effects
- Antiviral effects
- Anti-angiogenic effects

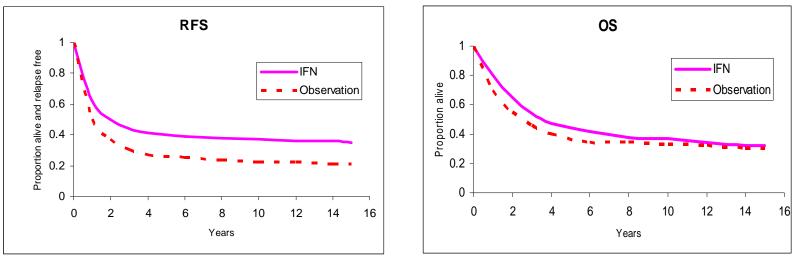
IFN-α (Interferon alfa-2b; Intron A®)

- Position 23 Arg instead of Gly of natural sequence
- Administered SC or IV
- Dosing
 - High (>10 MIU)
 - Intermediate (5-10 MIU)
 - Low (<3 MIU)
- Schedule: either qd or tiw
- $t\frac{1}{2} = 4$ hours

IFN-α Hematologic Malignancies

Malignancy	Dose schedule	RR (%) (mean)
Hairy cell leukemia	3 MIU/m²/d	70-90 (80)
CML	5 MIU/m²/d	45-85 (58)
NHL (follicular)	3-50 MIU/m ² /d or tiw	9-67 (47)
CTCL	3-50 MIU/m ² /d or tiw	27-85 (48)
Myeloma	5-12 MIU/m ² /d or tiw	3-18 (15)

$IFN-\alpha \\ Solid Tumors$

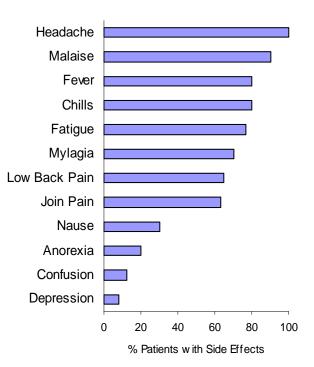

Tumor	Dose schedule	RR (%) (mean)
Melanoma	5-20 MIU/m ² /d or tiw	7-19 (18)
Kaposi's sarcoma	3-20 MIU/m ² /d or tiw	3-67 (30)
Renal cell	5-50 MIU/m ² /d or tiw	8-23 (15)
Endocrine pancreatic	3-5 MIU/m ² /d or tiw	33-77 (50)
Carcinoid	12-24 MIU/m ² /d or tiw	20-40 (20)

IFN-α Melanoma

INDICATIONS AND USAGE Malignant Melanoma

Indicated as adjuvant to surgical treatment in patients 18 years of age or older with malignant melanoma who are free of disease but at high risk for systemic recurrence, within 56 days of surgery.

20 MIU/m2 IV qd for 5 days weekly X 4 weeks (high dose induction) THEN


10 MIU/m2 tiw SC for 48 weeks (moderate dose maintenance)

Kirkwood et al. J Clin Oncol 1996

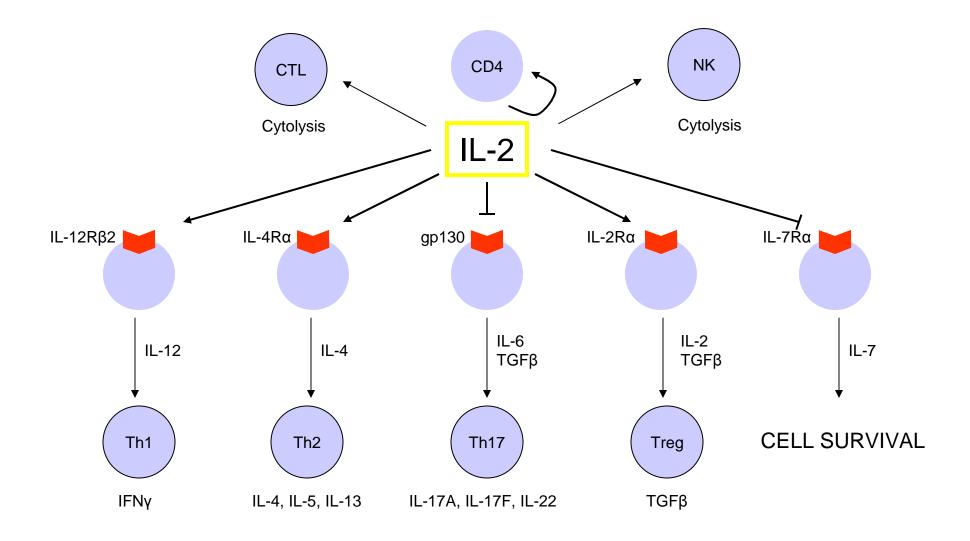
IFN-α Toxicity

- Severity is dose- and time-related
- Acute: flu-like
 - Fever, chills, myalgia, arthralgia, headaches
 - Subsides with continued treatment
- Cumulative: constitutional
 - Anorexia, depression, and fatigue
 - Progressive and often dose-limiting

Important Safety Information

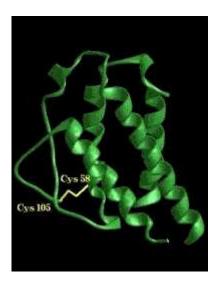
WARNING

Alpha interferons, including INTRON® A, cause or aggravate fatal or life-threatening neuropsychiatric, autoimmune, ischemic, and infectious disorders. Patients should be monitored closely with periodic clinical and laboratory evaluations. Patients with persistently severe or worsening signs or symptoms of these conditions should be withdrawn from therapy. In many but not all cases these disorders resolve after stopping INTRON A therapy.


All patients receiving INTRON A therapy experienced mild-to-moderate side effects. Some patients experienced more severe side effects, including neutropenia, fatigue, myalgia, headache, fever, chills, and increased SGOT. Other frequently occurring side effects were nausea, vomiting, depression, alopecia, diarrhea, and thrombocytopenia. DEPRESSION AND SUICIDAL BEHAVIOR, INCLUDING SUICIDAL IDEATION, SUICIDAL ATTEMPTS, AND COMPLETED SUICIDES, HAVE BEEN REPORTED IN ASSOCIATION WITH TREATMENT WITH ALFA INTERFERONS, INCLUDING INTRON A THERAPY.

$IFN-\alpha \\ \text{Antibody Induction} \\$

- Antibodies to recombinant IFN- α in 67%
- Neutralizing antibodies in 33%.
 - Often accompanied by a decrease in adverse effects
 - Impact on efficacy?

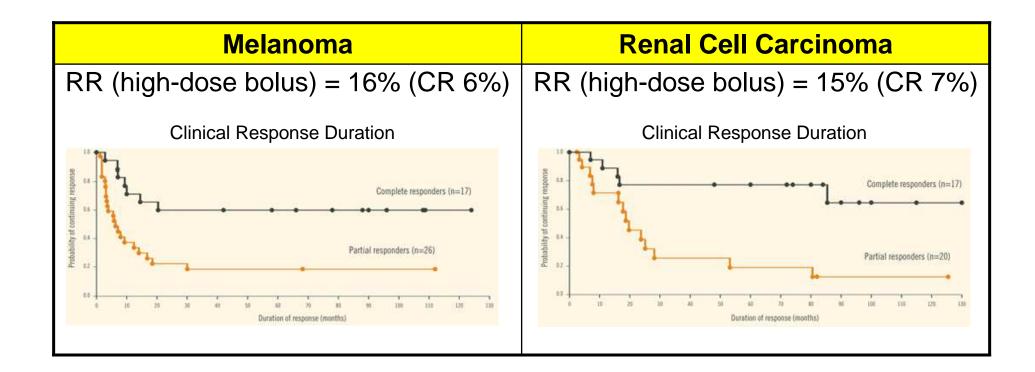


IL-2 (Aldesleukin; Proleukin®)

- Mutation of free-cysteine to reduce aggregation
- Administered IV or SC
- Dosing
 - High (>100 MIU)
 - Moderate (5-20 MIU)
 - Low (1-5 MIU)
 - Ultra-low (<1 MIU)
- Schedule: qd X 5-7 days (with rest)
- $t\frac{1}{2} = 1.5$ hours

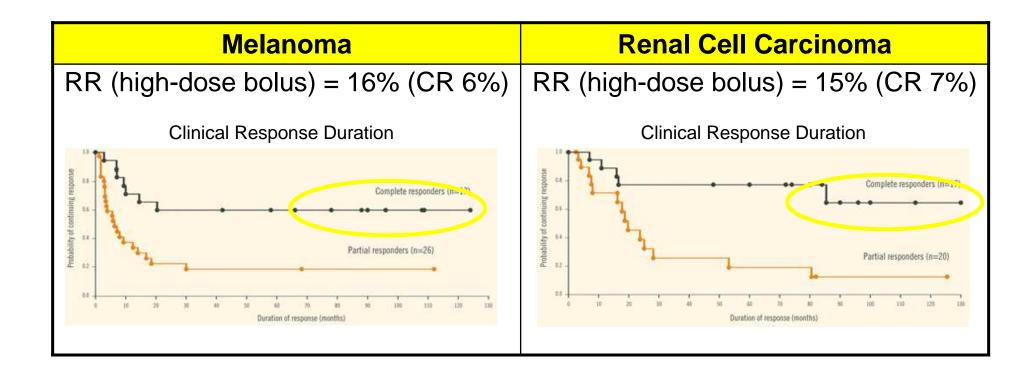
IL-2 Dosing

- Standard high-dose regimen:
 - 600,000-720,000 IU/kg q 8h over 5 days followed by 7-10 days of rest and then a repeat 5-day course.
 - Responders are retreated following 2 months of rest
- Moderate- and low-dose outpatient regimens
 - Better tolerated
 - Efficacy?

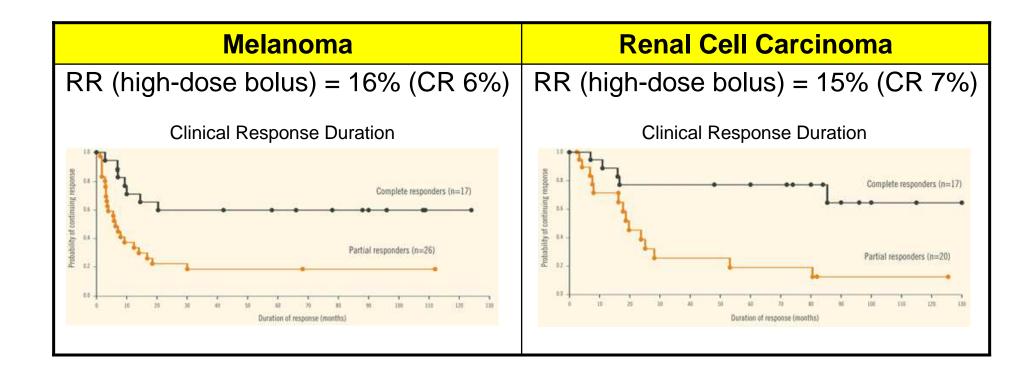

IL-2 Dosing

- Standard high-dose regimen:
 - 600,000-720,000 IU/kg q 8h over 5 days followed by 7-10 days of rest and then a repeat 5-day course.
 - Responders are retreated following 2 months of rest
- Moderate- and low-dose outpatient regimens
 - Better tolerated
 - Efficacy?

No consensus regarding the best way to deliver IL-2 from a risk-to-benefit standpoint


IL-2 Efficacy

http://www.proleukin.com/


IL-2 Efficacy

http://www.proleukin.com/

IL-2 Efficacy

Effect on overall survival?

http://www.proleukin.com/

IL-2 Toxicity

- \uparrow vascular permeability \rightarrow interstitial edema
- \uparrow other cytokines, e.g. TNF
- Lymphoid infiltration into organs

Organ system	Toxicity	Incidence (%)
General	Chills, fever Edema	97 55
Hematologic	Anemia Thrombocytopenia	99 83
Gastrointestinal	N/V Diarrhea	89 81
Hepatic	↑ transaminase ↑ bilirubin	75 85
Renal	Oliguria ↑ creatinine	81 81
Pulmonary	Dyspnea ARDS	57 1
Cardiovascular	Hypotension Arrhythmia MI	96 14 2
Neurologic	Altered MS Seizures	82 2
Skin	Rash Pruritus Exfoliative dermatitis	42 24 18

WARNINGS

Therapy with PROLEUKIN® (aldesleukin) for injection should be restricted to patients with normal cardiac and pulmonary functions as defined by thallium stress testing and formal pulmonary function testing. Extreme caution should be used in patients with a normal thallium stress test and a normal pulmonary function test who have a history of cardiac or pulmonary disease.

PROLEUKIN therapy should be administered in a hospital setting under the supervision of a qualified physician experienced in the use of anticancer agents. An intensive care facility and specialists skilled in cardiopulmonary or intensive care medicine must be available. PROLEUKIN therapy administration has been associated with capillary leak syndrome (CLS) which is characterized by a loss of vascular tone and extravasation of plasma proteins and fluid into the extravascular space. CLS results in hypotension and reduced organ perfusion which may be severe and can result in death. CLS may be associated with cardiac arrhythmias (supraventricular and ventricular), angina, myocardial infarction, respiratory insufficiency requiring intubation, gastrointestinal bleeding or infarction, renal insufficiency, edema and mental status changes.

PROLEUKIN treatment is associated with impaired neutrophil function (reduced chemotaxis) and with an increased risk of disseminated infection including sepsis and bacterial endocarditis. Consequently preexisting bacterial infections should be adequately treated prior to initiation of PROLEUKIN therapy. Patients with indwelling central lines and particularly at risk of infection with gram positive microorganisms. Antibiotic prophylaxis with oxacillian, nafcillin, ciprofloxacin or vancomycin has been associated with a reduced incidence of staphylococcal infections.

PROLEUKIN therapy administration should be withheld in patients developing moderate to severe lethargy or somnolence; continued administration may results in coma.

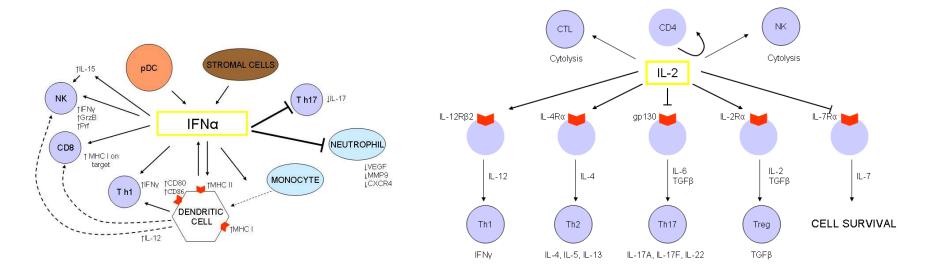
WARNINGS

Therapy with PROLEUKIN® (aldesleukin) for injection should be restricted to patients with normal cardiac and pulmonary functions as defined by thallium stress testing and formal pulmonary function testing. Extreme caution should be used in patients with a normal thallium stress test and a normal pulmonary function test who have a history of cardiac or pulmonary disease.

PROLEUKIN therapy should be administered in a hospital setting under the supervision of a qualified physician experienced in the use of anticancer agents. An intensive care facility and specialists skilled in cardiopulmonary or intensive care medicine must be available. PROLEUKIN therapy administration has been associated with capillary leak syndrome (CLS) which is characterized by a loss of vascular tone and extravasation of plasma proteins and fluid into the extravascular space. CLS results in hypotension and reduced organ perfusion which may be severe and can result in death. CLS may be associated with cardiac arrhythmias (supraventricular and ventricular), angina, myocardial infarction, respiratory insufficiency requiring intubation, gastrointestinal bleeding or infarction, renal insufficiency, edema and mental status changes.

PROLEUKIN treatment is associated with impaired neutrophil function (reduced chemotaxis) and with an increased risk of disseminated infection including sepsis and bacterial endocarditis. Consequently preexisting bacterial infections should be adequately treated prior to initiation of PROLEUKIN therapy. Patients with indwelling central lines and particularly at risk of infection with gram positive microorganisms. Antibiotic prophylaxis with oxacillian, nafcillin, ciprofloxacin or vancomycin has been associated with a reduced incidence of staphylococcal infections.

PROLEUKIN therapy administration should be withheld in patients developing moderate to severe lethargy or somnolence; continued administration may results in coma.



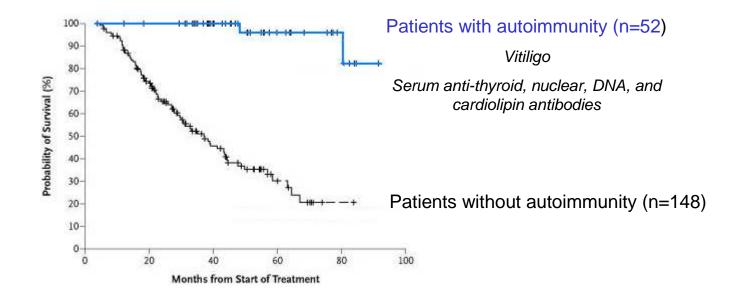
ALDESLEUKIN Antibody

- Low titers anti-aldesleukin antibodies in 66-74%
- Neutralizing antibody in <10%
 - Impact on adverse effects?
 - Impact on efficacy?

Mechanism of action?

- The molecular targets that influence the clinical response to cytokine therapy have not been defined
- The genetic or other host factors that differentiate responders and treatment failures are unknown.

CYTOKINE THERAPY Autoimmunity



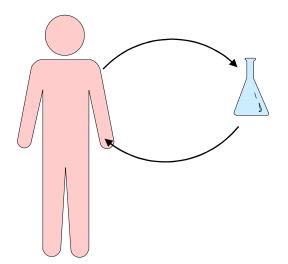
Vitiligo

Autoimmune sequelae are more prominent in patients that respond to cytokine immunotherapy?

ADJUVANT IFN-α2b Autoimmunity and Response

IL-2 Autoimmunity and Response

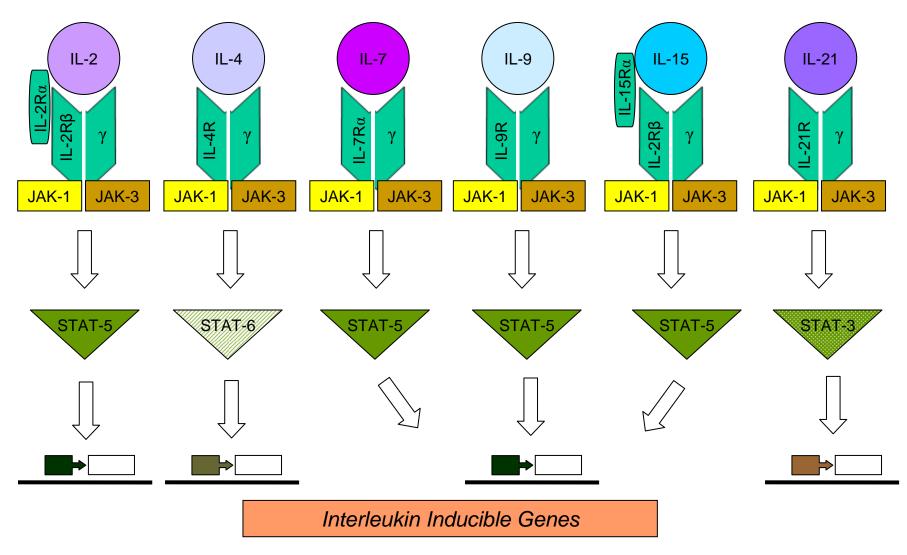
	Responders	Non-responders	Р
Vitiligo	28/58 (48%)	56/316 (18%)	P=0.000001
Thyroiditis (abnormal TSH)	43/58 (74%)	176/314 (57%)	P=0.01


Phan et al. J Clin Oncol 2001

CYTOKINES Clinical Trials

IL-1β	Ineffective Toxic (Did mitigate IL-2 toxicity)
IL-4	Minimal activity Toxic (growth factor for myeloma)
IL-6	Minimal activity Toxic
IL-12	Minimal activity Toxic
TNF	Ineffective Toxic (hypotension)
GM-CSF	Inconsistent single agent activity Well tolerated

MELANOMA Adoptive Cellular Therapy



Generate TIL	<u>Non-mye</u>				
Excise tumor	FuCy			IL-2	RR = 51% (n=35)
Culture with IL-2	<u>Myeloablative</u>		Infuse TIL	PBSC	
Assay specificity Select/expand	Collect PBSC	FuCy		IL-2	RR 52% (2 Gy, n=25) RR 72% (12 Gy, n=25)
(10 ¹⁰ cells)	(G-CSF)	TBI (2 v 12 Gy)			

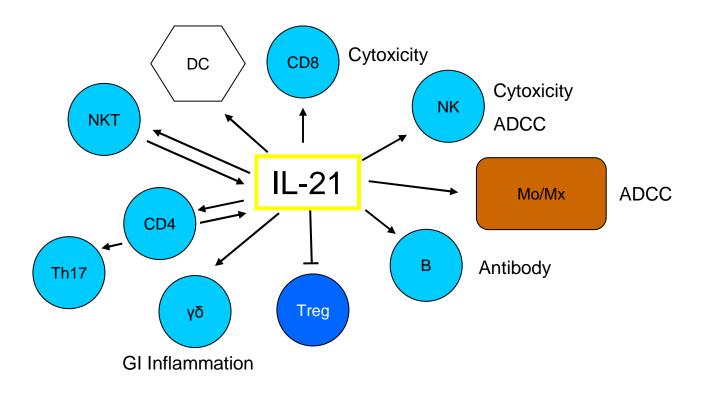
Rosenberg et al. Science 2006; Dudley et al. JCO 2008

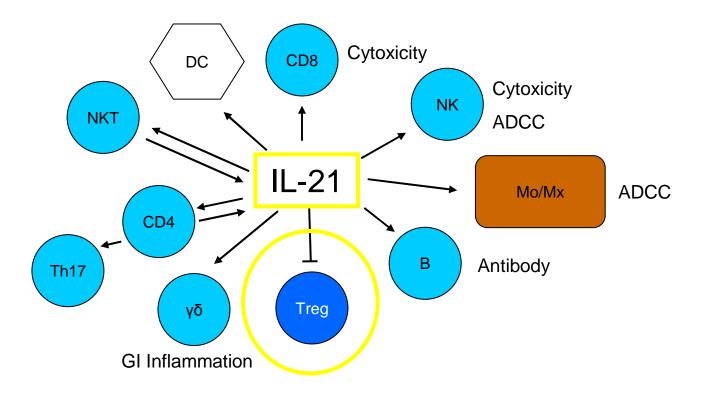
γ CHAIN CYTOKINES

γ CHAIN CYTOKINES Clinical Trials

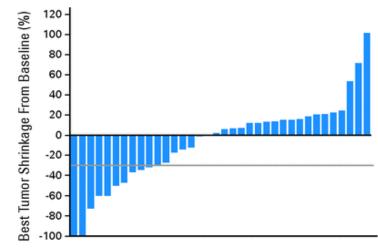
Cytokine	Main Function	Cancer Indications	Clinical Trial
IL-2	T cell generation and function, NK activation	Melanoma, renal	FDA approved
IL-4	Th2 polarization, T proliferation, B cell activation	None	None

γ CHAIN CYTOKINES Clinical Trials


Cytokine	Main Function	Cancer Indications	Clinical Trial
IL-2	T cell generation and function, NK activation	Melanoma, renal	FDA approved
IL-4	Th2 polarization, T proliferation, B cell activation	None	None
IL-7	Pre-B and pre T cell development	Solid tumors (HIV and HSCT)	Phase II
IL-15	Stimulates T and NK cells	Melanoma, renal, solid tumors	Phase I, I/II
IL-21	Induction of B, T, and NK cells	Melanoma, renal ovarian, solid tumors	Phase II


γ CHAIN CYTOKINES Clinical Trials

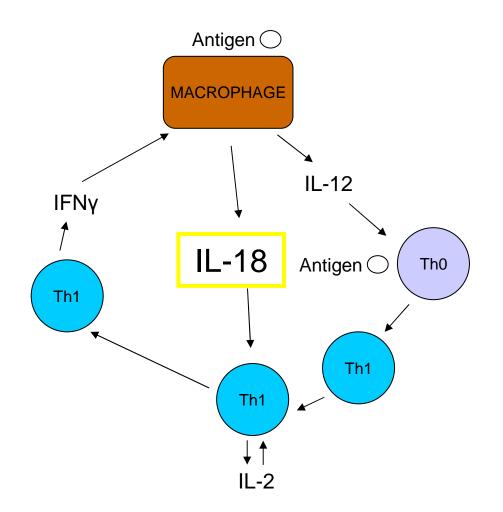
Cytokine	Main Function	Cancer Indications	Clinical Trial
IL-2	T cell generation and function, NK activation	Melanoma, renal	FDA approved
IL-4	Th2 polarization, T proliferation, B cell activation	None	None
IL-7	Pre-B and pre T cell development	Solid tumors (HIV and HSCT)	Phase II
IL-15	Stimulates T and NK cells	Melanoma, renal, solid tumors	Phase I, I/II
IL-21	Induction of B, T, and NK cells	Melanoma, renal ovarian, solid tumors	Phase II



IL-21

- Phase II study of three dosing regimens
- Metastatic melanoma (N=40)
- RR = 22.5% (9/40 PR)
 - RR not depended on IL-21 receptor expression or BRAF mutation status.
- OS = 12.4 months; PFS = 4.3 months
- Common adverse events were fatigue, rash, diarrhea, nausea, and myalgia.
 - 6 patients had dose-limiting toxicities

IL-1 FAMILY


	Receptor/co-receptor	Property
IL-1α	IL-1RI/IL-1RacP	Proinflammatory
IL-1β	IL-1RI/IL-1RacP	Proinflammatory
IL-1Ra	IL-1RI	Antagonist for IL-1 α , β
IL-18	IL-18Rα/IL-18Rβ	Proinflammatory
IL-36Ra	IL-1Rrp2	Antagonist for IL-36
IL-36α	IL-1Rrp2/IL-1 RAcp	Proinflammatory
IL-37	IL-18Rα, IL-18BP	Anti-inflammatory
IL-36 β	IL-1Rrp2/IL-1RAcP	Proinflammatory
IL-36γ	IL-1Rrp2/IL-1RAcP	Proinflammatory
IL-38	IL-1Rrp2	? Antagonist
IL-33	ST2/IL-1RAcP	Proinflammatory

IL-1 FAMILY

	Receptor/co-receptor	Property
IL-1α	IL-1RI/IL-1RacP	Proinflammatory
IL-1β	IL-1RI/IL-1RacP	Proinflammatory
IL-1Ra	IL-1RI	Antagonist for IL-1 α , β
IL-18	IL-18Rα/IL-18Rβ	Proinflammatory
IL-36Ra	IL-1Rrp2	Antagonist for IL-36
IL-36α	IL-1Rrp2/IL-1 RAcp	Proinflammatory
IL-37	IL-18Rα, IL-18BP	Anti-inflammatory
IL-36 β	IL-1Rrp2/IL-1RAcP	Proinflammatory
IL-36γ	IL-1Rrp2/IL-1RAcP	Proinflammatory
IL-38	IL-1Rrp2	? Antagonist
IL-33	ST2/IL-1RAcP	Proinflammatory

IL-18

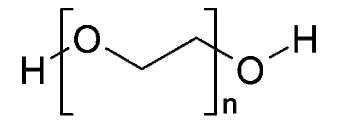
- Phase 2, randomized dosing study
- Metastatic melanoma (N=64)
- RR: 2% (1/64 PR)

	Dose Group, mg/kg/d								
	0.01 n=21		0.1 n=21			1.0 n=22		Total N=6	4
				No	. of Subjects	(%)			
Adverse Event	Grade 3	Grade 4	Grade 3	Grade 4	Grade 5	Grade 3	Grade 4	Grade 5	Grade 3-5
Fatigue	2 (10)	_	_	_	_	2 (9)	_	_	4 (6)
Abdominal pain	1 (5)	—	1 (5)	—	—	—	—	1 (5)	3 (5)
Back pain	1 (5)	—	1 (5)	—	—	—	—	—	2 (3)
Dyspnea	1 (5)	_	2 (10)	_	1 (5)	2 (9)	—	—	5 (8)
Ascites	_	—	1 (5)	—	—	—	1 (5)	—	2 (3)
Pleural effusion	_	1 (5)	—	—	—	2 (9)	—	—	3 (5)
Polyarthritis	1 (5)	—	—	—	—	—	—	—	1 (2)
Deep vein thrombosis	1 (5)	—	—	—	—	—	—	—	1 (2)
Pulmonary embolism	1 (5)	_	_	_	_	_	—	_	1 (2)
Cognitive disorder	_	—	1 (5)	—	_	_	—	—	1 (2)
Lipase increased	_	_	_	1 (5)	_	_	_		1 (2)

TOXICITY

CYTOKINE THERAPY

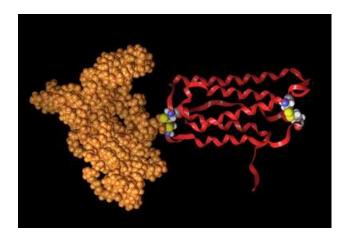
- Reponses are infrequent (but durable)
- Toxicity is limiting
- Treatments are cumbersome
 - Multiple injections/infusion
 - Immunogenic


CYTOKINE THERAPY

- Improve cytokine delivery
 - PEGylation
 - Cytokine-antibody fusion molecules
 - Recombinant virus delivery systems
- Combination therapy
 - Cytokine + vaccine

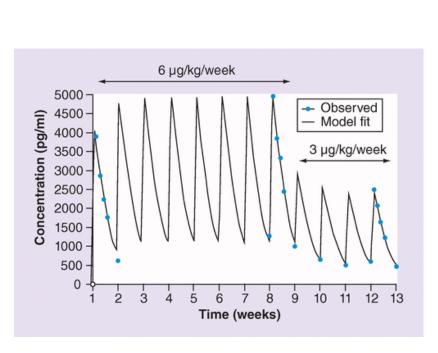
PEGYLATION

covalent attachment of polyethylene glycol (PEG) polymer chains to drug

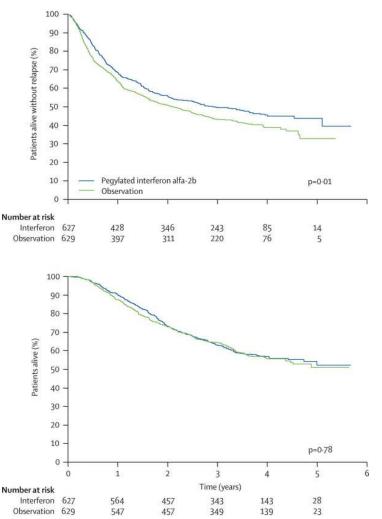

- ↑ drug solubility
- ↑ circulating life
- ↑ Increased drug stability
 - \uparrow protection from proteolytic degradation
- ↓ immunogenicity and antigenicity
- ↓ dosage frequency
 - Without diminished efficacy
 - Potentially reduced toxicity

Improve PK

CYTOKINE PEGYLATION


Drug	Composition	Indication	FDA Approval
Pegineterferon alfa-2b (PegIntron; Sylatron)	PEGylated interferon alpha	chronic hepatitis C and hepatitis B; melanoma	2000 (2011 melanoma)
Peginterferon alfa-2a (Pegasys)	PEGylated interferton	chronic hepatitic C and hepatitis B	2001
Pegilgrastim (Neulasta)	PEGylated recombinant methionyl human granulocyte colony- stimulating factor	chemotherapy- induced neutropenia	2002

Pegylated Interferon alfa-2b


ADJUVANT INTERFERON Pegylated Interferon alfa-2b

6 mcg/kg/week SC for 8 doses

THEN

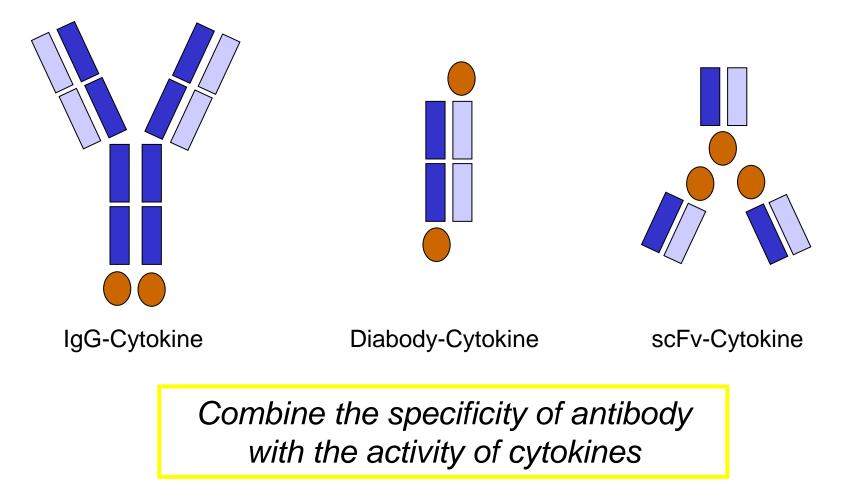
3 mcg/kg/week SC for up to 5 yr

Eggermont et al. Lancet 2008

ADJUVANT INTERFERON Pegylated Interferon alfa-2b

	HD IFN	PEG-IFNa2b
Cytopenia	+	
Flu like symptoms	+	
Hepatotoxicity	+	
Neurotoxicity	+	
Fatigue	+	+
Anorexia	+	+
Depression	+	+

More favorable safety profile


+

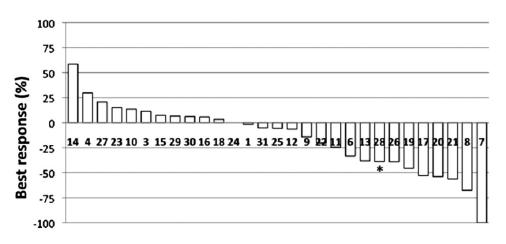
Greater convenience (less frequent dosing)

FDA approval adjuvant treatment for stage III melanoma.

IMMUNOCYTOKINES

IMMUNOCYTOKINES Clinical Development

Immunocytokine	Format	Antigen	Indication	Clinical Trial
F16-IL2	Diabody	Tenascin C A1 domain	Breast, lung	Phase lb/ll
Hu14.18-IL2	lgG	GD2	Melanoma, neuroblastoma	Phase II
L19-IL2	Diabody	Fibronectin EDB	Melanoma, pancreas, renal	Phase IIb
NHS-IL2LT	lgG	DNA	Lung, NHL	Phase I/II
BI-IL12	lgG	Fibronectin domain VII	Melanoma	Phase I/II
NHS-IL12	lgG	DNA/histone	Solid tumors	Phase I
L19-TNF	scFv	Fibronectin EDB	Melanoma	Phase I/II


L19-IL2 (Darleukin)

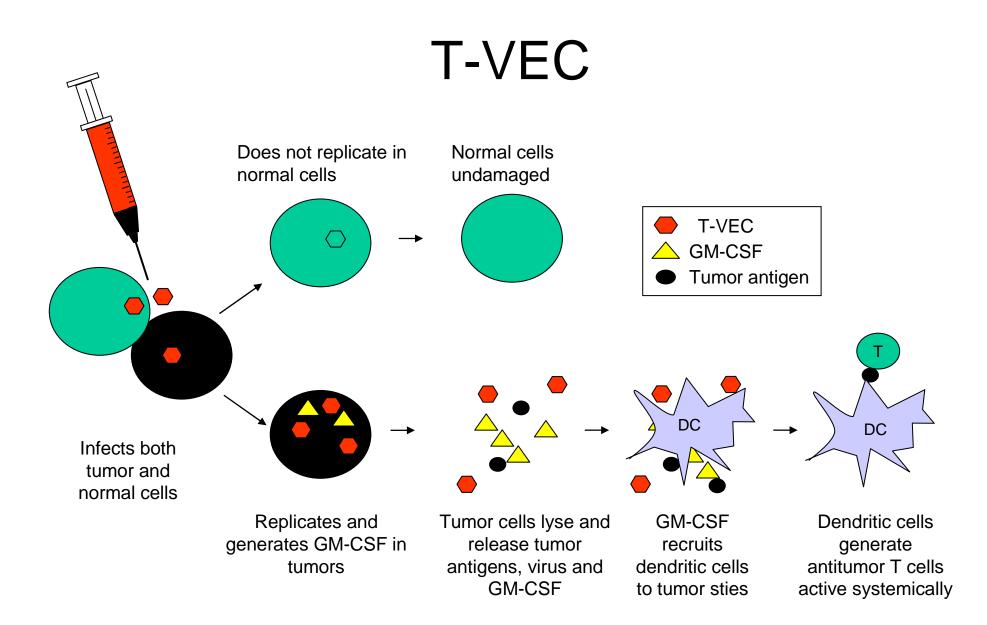
- Immunocytokine composed of a diabody specific to the EDB domain of fibronectin, a tumor angiogenesis marker, and of human interleukin-2 (IL2).
- Delivers IL2 to the tumor site exploiting the selective expression of EDB on newly formed blood vessels.

L19-IL2 **Clinical Trial**

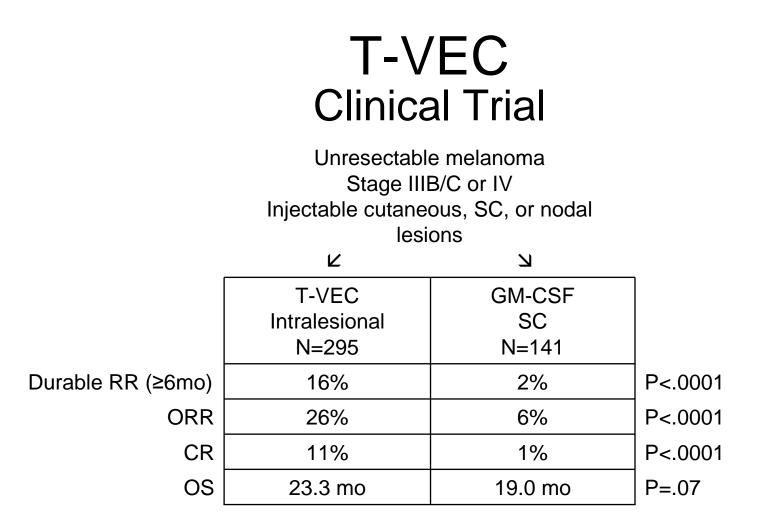
- Metastatic melanoma (N=32)
- RR: 8/29 (28%); 1 CR Median overall survival 14.1 months - 12-month survival rate 61.5%
- Most frequent adverse events included chills, fatigue, and fever
 - Dose related
 - Mild or moderate in severity



Eigentler et al. Clin Cancer Res 2011


T-VEC (Talimogene Laherparepvec; OncoVEX^{GM-CSF})

- Attenuated herpes virus
- Expresses GM-CSF



Recombinant virus delivery systems

- Well tolerated
 - Mild fatigue, chills, or fever
 - Most common serious adverse event was cellulitis (2%)

Andtbacka et al. ASCO 2013 (abstr)

CYTOKINE THERAPY Combinations

 Despite yielding higher response rates, regimens that combine IFN with IL-2 (and/or chemotherapy) have not produced better survival

MELANOMA VACCINE HD IL-2 ± Immunization

				P=0.008 P=0.008 P=0.008 P=0.008
	gp100:209-217(210M) peptide vaccine followed by HD IL-2	HD IL-2	Р	40- Interleukin-2 alone 20- Interleukin-2 + vaccine
N	91	94		0 1 2 3 4 5 Years
RR	16%	6%	.03	100 P=0.06
PFS	2.2 mo	1.6 mo	.008	
OS	17.8 mo	11.1 mo	.06	
				20- Interleukin-2 alone

3 Years

0-

CYTOKINE THERAPY

- One of the few approaches that can induce complete and durable tumor responses
- Single agent response rates have been low
- Dosing and scheduling have been empiric
- Limited by frequent and often severe toxicity
- Mechanism of responses are not known

CYTOKINE THERAPY Future Directions

- Improve PK/PD
- Combinations

CYTOKINE THERAPY PK/PD

- Prolong half-life
 - PEGylation
- Enhanced specificity
 - Cytokine-antibody fusion molecules
 - Recombinant virus delivery systems

CYTOKINE Combinations

- Cytokines + chemotherapy/targeted therapy
- Cytokines + other immune-stimulating agents
 - Vaccines
 - Adoptive cellular therapy
- Cytokine + agents that target immunosuppression
 - Checkpoint inhibitors (anti-CTLA-4, anti-PD1)
 - Myeloid-derived suppressor cells (e.g. sunitinib).

CYTOKINE Combinations

- Combination approaches will be challenging
 - Attributing toxicity
 - Attributing response.
- Some cytokines (e.g. IL-2) are thought to be most effective at high doses

CYTOKINE THERAPY Biomarkers

- PD/immune monitoring
 - Cumbersome
 - Reproducibility
- Identify factors that predict response
 - Spare 'non-responders' unnecessary treatment and toxicity

Rank	Agent	Agent Category	
1	IL-15	T-Cell Growth Factor	
2	Anti-PD1 and/or B7-H1	T-Cell Checkpoint Blockade Inhibitor	
3	IL-12	Vaccine Adjuvant	
4	Anti-CD40 and/or CD40L	Antigen Presenting Cell Stimulator	
5	IL-7	T-Cell Growth Factor	
6	CpG	Vaccine Adjuvant	
7	1-Methyl Tryptophan	Enzyme Inhibitor	
8	Anti-CD137 (anti-4-1BB)	T-Cell Stimulator	
9	Anti-TGF-beta	Signaling Inhibitor	
10	Anti-IL-10 Receptor or Anti-IL-10	Suppression Inhibitor	
11	Flt3L	Dendritic Cell Growth Factor	
12	Anti-GITR	T-Cell Stimulator	
13	CCL21 Adenovirus	T-Cell Attracting Chemokine	
14	Monophosphoryl Lipid A	Vaccine Adjuvant	
15	Poly I:C and/or Poly ICLC	Vaccine Adjuvant	
16	Anti-OX40	T-Cell Stimulator	
17	Anti-B7-H4	T-Cell Checkpoint Blockade Inhibitor	
18	Resiquimod and/or 852A	Vaccine Adjuvant	
19	LIGHT and/or LIGHT vector	T-Cell Stimulator	
20	Anti LAG-3	T-Cell Checkpoint Blockade Inhibitor	

Final Rankings of Agents with High Potential for Use in Treating Cancer

NCI Immunotherapy Agent Workshop 2007

