Immune Potentiating Cytokines

Howard L. Kaufman, MD

An Introduction to Cytokines

- General mechanisms of action
- FDA-Approved Cytokines for Cancer Immunotherapy
 - Interferon-α2b (Intron-A)
 - Pegylated interferon-α2b (Sylatron)
 - Interleukin-2 (Proleukin)
- Other Cytokines in Development

General mechanism of cytokine signaling

Interferons

- Type I
 - $-\alpha$: from neutrophils, m
 - $-\beta$: from fibroblasts, epithelial cells
- Type II
 - : from T, NK cells
- Immunomodulatory effects
 - MHC class I/II upregulation
 - Modulation of T/NK cell cytolytic activity
 - Modulation of macrophage/DC function
 - Decreased Treg/increased Th1
 - Inhibition of angiogenesis

Interferon Signaling

Interferon Administration

- Induction Phase
 - 20 Million Units/m² IV Monday through Friday for 4 weeks
- Maintenance Phase
 10 Million Units/m² SQ M-W-F for 11 months
- Dose reductions or discontinuation for toxicity

E1684: Estimated Relapse-Free Survival

J Clin Oncol. 1996;14:7-17.

E1684: Estimated Overall Survival

J Clin Oncol. 1996;14:7-17.

Meta-analysis of IFN effect on DFS

	HR	LL	UL	SE	Patients	Events (IFN/control)	
NCCTG (Creagan, 1995) E1684 (Kirkwood, 1996) AMCG (Pehamberger, 1998) FCGM (Grob, 1998) E1690 (Kirkwood, 2000) SMG (Cameron, 2001) E1694 (Kirkwood, 2001) WHO (Cascinelli, 2001) E2696 (Kirkwood, 2001)	0.76 0.67 0.61 0.74 0.81 0.80 0.67 0.88 0.59	0.56 0.50 0.40 0.56 0.65 0.52 0.53 0.60 0.32	1.04 0.88 0.93 0.98 1.01 1.23 0.85 1.28 1.07	0.16 0.14 0.21 0.14 0.11 0.22 0.12 0.20 0.31	264 287 311 499 642 96 880 444 107	77/85 90/103 37/57 100/119 236/254 32/35 98/151 162/158 28/38	
UKCCCR (Hancock, 2004) EORTC18871 (Kleeberg, 2004) EORTC18952 (Eggermont, 2005) DeCOG (Garbe, 2008) EORTC18991 (Eggermont, 2008)	0.91 1.05 0.88 0.69 0.84 0.82	0.75 0.84 0.75 0.51 0.72 0.77	1.10 1.31 1.03 0.94 0.97 0.87	0.10 0.11 0.08 0.16 0.08 0.03	674 484 1388 296 1256	211/215 159/218 596/328 84/102 322/361	

Favors IFN Favors control

Meta-analysis of IFN effect on OS

	HR	LL	UL	SE	Patients	Events (IFN/control)	
NCCTG (Creagan, 1995)	0.90	0.64	1.25	0.17	264	68/72	
E1684 (Kirkwood, 1996)	0.73	0.54	0.99	0.15	287	81/90	
FCGM (Grob, 1998)	0.70	0.49	0.98	0.17	499	59/76	
E1690 (Kirkwood, 2000)	0.98	0.76	1.24	0.12	642	194/186	
SMG (Cameron, 2001)	0.86	0.54	1.35	0.23	96	31/36	o
E1694 (Kirkwood, 2001)	0.72	0.52	0.99	0.16	880	52/81	
WHO (Cascinelli, 2001)	0.95	0.76	1.20	0.12	444	146/138	
UKCCCR (Hancock, 2004)	0.94	0.74	1.17	0.12	674	151/156	
EORTC18871 (Kleeberg, 2004)	0.98	0.77	1.23	0.12	484	137/202	
EORTC18952 (Eggermont, 2005)	0.91	0.76	1.07	0.09	1388	534/292	
DeCOG (Garbe, 2008)	0.62	0.44	0.86	0.17	296	65/88	
EORTC18991 (Eggermont, 2008)	1.00	0.84	1.18	0.09	1256	256/257	
	0.89	0.83	0.96	0.04			
						1	16 1 2

Favors IFN Fav

Favors control

Morcellin et al. JNCI 2010

Common Interferon Toxicity

- Flu-like syndrome
- Fatigue
- Cytopenias

Acetominophen/benadryl Dose reduction, if severe Dose reduction, if severe

- Increased LFTs
- Weight loss
- Alopecia

Dose reduction, if severe Dose reduction, if severe

Less Common Interferon Toxicity

- Nausea/vomiting
- Diarrhea
- Hypotension
- Depression
- Cough
- Dry mouth
- Skin rash
- Irritability

Anti-emetics Anti-diarrheals Fluids, dose reduce

Anti-depressants Symptomatic Fluids Moisturizers Dose reduce

Pegylated Interferon

Drug with Low Solubility Short Biological Half Life Unstabile in Biological Fluid

PEG (Polyethylene glycol)

PEG-Interferon Administration

Induction phase

6 mcg/kg SQ weekly for 8 weeks

Maintenance Phase

3 mcg/kg SQ weekly for up to 5 years

Dose reduction or discontinuation for toxicity

Pegylated IFN vs. Observation in Resected Stage III Melanoma

Recurrence-free Survival

Overall Survival

Eggermont et al. Lancet 2008

PEGylated IFN in N1a Disease

Recurrence-free Survival

Overall Survival

PEGylated IFN in N1b Disease

Recurrence-free Survival

Overall Survival

PEGylated IFN in patients with ulcerated primary melanomas

Eggermont et al. JCO 2012

Induction of autoimmunity correlates with survival in IFN-α treated patients

Gogas et al. NEJM 2006

Interleukin-2 (IL-2)

- Natural biologic immunomodulatory agent
- T cell growth factor
- Proliferation of T cells and NK cells
- Promotes the killing activity of these cells
- Powerful anti-tumor effects in animal studies
- Extensively evaluated in patients with cancer
- FDA approved for metastatic renal cell in 1992
- FDA approved for metastatic melanoma in 1998

Interleukins and Their Receptors

IL-2 Receptor

- Binds chain
- Forms heterotrimeric complex
- Signals through and c chains
- Induces T cell growth and promotes survival

Mechanism(s) of IL-2 anti-tumor activity

Malek and Bayer, Nature Rev Immunol 2004

Tregs exhibit a paradoxical response to IL-2 treatment

24

High-dose Bolus rIL-2 Regimen

- IL-2 600,000 IU/kg every 8 hours by 15-minute IV infusion for a maximum of 14 doses
- 9-16 day rest period
- Repeat schedule for another 14 doses
- Maximum 28 doses per course of therapy
- No dose reductions are performed during high-dose IL-2 therapy
- Excessive toxicity treated by withholding dose or discontinuing treatment for that cycle

Patient Selection for IL-2 Treatment

- ECOG performance status 0 or 1
- Adequate pulmonary function
 - FEV1 and FVC ϵ 75% of predicted
 - No evidence of symptomatic pulmonary disease
- Normal cardiac function
 - For patients >50 years of age or with ischemic symptoms, consider stress thallium or other stress tests
- Adequate renal function
 - Creatinine levels should be δ 1.6 mg/dL

Patient Selection (cont)

- Adequate hepatic function
 - Bilirubin δ 2.0 g/dL
 - SGOT <3 · ULN, unless due to liver metastases
- Adequate hematologic function
 - ANC ε1500/mm3
 - Platelets >100,000
 - Hemoglobin ε9.0 gm/100 mL
- No CNS metastases (unless adequately treated)
 - MRI brain within one month
- No corticosteroids

IL-2 Toxicity

- Most side effects are preventable
- Nearly all side effects are reversible
- All side effects can be managed by qualified physicians and nurses
- Management begins with pre-treatment screening

Vascular Leak Syndrome

Used with permission from Lori Stover, RN.

Pivotal High Dose IL-2 Trials: The NCI Experience

	<u>N</u>	No. of Patients (%)			
		CR	PR		
Melanoma	182	12(6.6)	15(8.2)		
Renal Cell	227	21(9.3)	22(9.7)		
Total	409	33(8.1)	37(9.0)		

Rosenberg et al. Ann Surg 1998

High-dose IL-2 for Renal Cell Carcinoma

- 115 patients
- Renal cell carcinoma
- 720,000 IU/kg (147)
- Median follow-up 52 months
- No mortality

High-dose IL-2 for Melanoma

- 270 patients, 1985-93
- Melanoma
- 600,000 IU/kg (118)
- 720,000 IU/kg (147)
- 6 (2.2%) mortality
 - 5/6 had ECOG PS 1
 - Bacterial sepsis in all 6
 - No prophylactic antibiotics
 - No deaths after 1990

High-dose IL-2 induces durable objective clinical responses in 15-20%

Data on file. Chiron Corporation.

Case Example of Melanoma Patient Treated With High-Dose IL-2

Case Study: 8 year old girl with melanoma spread to the liver

Before Treatment

After Treatment

Soni et al. J Pediatr Hematol Oncol 2002

High-dose IL-2 after No Response on Biochemotherapy

High-dose IL-2 promotes durable disease free survival in responders

Rosenberg et al. Ann Surg 1998 Klapper et al. Cancer 2008

IL-2 and radiation therapy: Abscopal effect?

66% objective response rate

30 Volume 2 30 Volume 2 TIDS P0001849703 Feb 06 2012 774053 Apr 08 2010 5 52 DFDV 52,0 x 104.0 cm Weighted HD MIF No cut Weighted Factor Medium SUN 64 NWO NUDO 1=0.00 H=0.31 g/11 1050 N=0.00 N=8.68 g/411248 -999000

Seung et al. Sci Transl Med 2012

What correlates with response to IL-2 treatment?

- Performance status
- Development of autoimmunity
 - Autoimmune thyroiditis
 - Vitiligo
- Amount of IL-2 given during first course
- Height of the rebound lymhocytosis
- CA IX (in renal cell carcinoma)?
- Pre-treatment VEGF/fibronectin levels?

Biomarkers of IL-2 response: Proteomic analysis

A Validation set

B VEGF and Fibronectin map

C Training and Validation set

Sabatino et al. JCO 2009

VEGF predicts survival following IL-2 treatment

Survival, by VEGF group

IL-15 Signaling

- Unique _c cytokine that complexes with receptor from cell of origin, then signals target cell
- With IL-2 and IL-7 in c cytokine family promoting T cell growth and differentiation but may not expand Tregs
- Clinical trials starting

Margolin, Lazarus and Kaufman 2013

Comparing IL-2 and IL-15

• <u>IL-2</u>

- Activated T, B express high-affinity receptor
- Prolif/differentiation of NK, T, and B cells
- Promotes activationinduced cell death
- Maintenance of Treg
- -/- KO develops autoimmunity

• <u>IL-15</u>

- Produced by DC, monos
- Surface-bound on DC/mono receptors on NK, CD8a1 T cells
- Promotes proliferation NK, T, B, and memory CD8 T cells
- Inhibits AICD
- Does not support Treg
- -/- KO is lymphopenic

Interleukin-21

IL-21

Phase I IL-21 clinical trial

Melanoma

Renal cell carcinoma

Thompson et al. JCO 2008

IL-4

- Pleomorphic Th2 cytokine
- Net effects depend on milieu
 - Mainly a B cell-stimulator
 - Inhibits non-specific NK activity
 - Enhances other adaptive immune functions
 - Growth factor for Th2
 - Promotes proliferation, cytotoxicity of CTL
 - Stimulates MHC class II expression
 - Contributes to DC maturation
 - Enhances mΦ tumorcidal activity

IL-4

- Promising preclinical data, especially transgenic secretion by tumor
- Clinical experience limited
 - Studied like IL-2 at MTD
 - Unfavorable therapeutic index
- Used routinely to elicit i-moDC from PBMC – Used ex vivo w/GM-CSF
 - Shares some structure, function with IL-13

IL-4 and IL-13

- Similarities
 - Predominantly antiinflammatory effects
 - Favor Th₂ responses
 - Partially common receptor
 - Promotes Ig class switch
 - Used w/ GM-CSF moDCs

- Differences
- IL-13 activity on monocyte/mΦ cells
- IL-13 lacks B, T cell effects
- IL-13 receptors on tumor cells, especially glioma
- Immunotoxins
- Chimeric T cell Ag receptor

Signaling/gene expression JAK 1,3 STAT 5 PI3K mTOR activation

Regulation contrasts with IL-2, IL-15 Unique to IL-7 is receptor downregulation IL-7 accumulates during lymphopenia due to utilization

Mediates homeostatic expansion of naïve cells during lymphopenia May have clinical potential, possibly with IL-15, IL-21)

IL-12 Cytokine Family

IL-2 vs. IL-12 Signaling

IL-12 links innate and adaptive immune responses

IL-12

- Link between innate, adaptive immune response
 - Receptors on variety of immune cells
 - Induces IFN- , a prototypical type I cytokine
- Potent inducer of counterregulatory type 2 cytokines
 - Emerged in clinical trials for advanced malignancy
 - Schedules and doses may be manipulated
- Clinical potential
 - Vaccine adjuvant
 - Induction of anti-angiogenesis
 - In combinations e.g. w/ -IFN, IL-2?

GM-CSF

- Cells of origin
 - Th1, Th2
 - Others include epithelial, fibroblast, tumor
- Target cell: immature DC (& myeloid progenitor)
- Biological functions
 - Stimulation of T cell immunity via effect on APC
 - Myeloid cell proliferation, differentiation
- Clinical development
 - Hematopoietic support
 - Not a potent stand-alone cytokine in cancer
 - Adjuvant for melanoma: (-) results+/- peptide vaccine
 - Immunocytokine in prostate cancer DC product
 - Transgenic expression (GVAX) [and other cytokines]

Mechanism of GM-CSF anti-tumor activity?

Jinushi et al. JCI 2007

Non-immune potentiating cytokines

- IL-6
- IL-10
- IL-17??
- TGF-β
- VEGF

Conclusions

- Immune-potentiating cytokines have shown clinical benefit in patients with cancer
 - IL-2
 - Interferon-α
- The mechanism of cytokine-mediated tumor regression is unclear
- Several cytokines are in clinical development
- Combination studies are in progress
 - Cytokines and immunotherapy (e.g. anti-CTLA-4, PD-1)
 - Cytokines and targeted therapy (e.g. BRAF inhibitors)
 - Cytokines and radiation (e.g. absocopal effect)
- Predictive biomarkers are in development
 - Autoimmunity
 - \/FGF